Federal Aviation Administration

Presented to: SEA-TAC Stakeholder Advisory Round Table Meeting

By: Kevin Welsh & Jim Hileman
Office of Environment and Energy
Federal Aviation Administration

Date: June 26, 2019

FAA Efforts to Understand and Address Aviation Noise and Emissions Challenges
FAA Organizational Structure

LINES OF BUSINESS
- **ATO** - Air Traffic Organization
- **ARP** - Airports
- **AVS** - Aviation Safety
- **ASH** - Security & Hazardous Materials Safety
- **AST** - Commercial Space Transportation

STAFF OFFICES
- **ACR** - Civil Rights
- **AGC** - Chief Counsel
- **AHR** - Human Resource Management
- **AOC** - Communications
- **AFN** - Finance & Management
- **AGI** - Government & Industry Affairs
- **ANG** - NextGen
- **APL** - Policy, International Affairs & Environment
- **AAE** - Audit & Evaluation

Office of Environment and Energy (AEE)

MMAC - Mike Monroney Aeronautical Center
WJHTC - William J. Hughes Technical Center
Economic Benefits of Aviation

- 5.1% of U.S. GDP
- 10.6 Million U.S. jobs
- $1.6 Trillion in U.S. economic activity annually
- $59.9 Billion of U.S. Trade Balance (exports-imports)

SOURCE: FAA Air Traffic Organization

Aviation equipment (aircraft, spacecraft, and related equipment) is largest export sector in U.S. economy accounting for over 8% of total exports.

SOURCE: U.S. International Trade Commission
AEE Mission and Vision

Mission:
To understand, manage, and reduce the environmental impacts of global aviation through research, technological innovation, policy, and outreach to benefit the public

Vision:
Remove environmental constraints on aviation growth by achieving quiet, clean, and efficient air transportation
Environmental & Energy Strategy

FAA VISION
Reach the next level of safety, efficiency, environmental responsibility and global leadership

GOALS
• Noise
• Air Quality
• Energy

POLICIES & PROCEDURES
• Aircraft and Engine Standards
• CORSIA
• Community Engagement

ANALYSIS
• Inform decision making
• Evaluate progress toward goals

INNOVATION
Technology
 Fuels
 Operations
 New Entrants

PLAN
• Environment and energy policy statement 1
• U.S. Action Plan 2
• Research roadmaps 3

ADVANCE SCIENCE AND INTEGRATED MODELING
Source characterization
Propagation and dispersion
Health and welfare impacts
Aviation Environmental Tool Suite

Notes:
3. Environment and Energy Website: http://www.faa.gov/go/environment
Continuous Lower Energy, Emissions and Noise (CLEEN)

- Reduce aircraft fuel burn, emissions and noise through technology & advance alternative jet fuels
- Cost share partnership with industry

ASCENT Center of Excellence (COE)

- COE for Alternative Jet Fuel and Environment
- Cost share research with universities

Additional Efforts

- Commercial Aviation Alternative Fuels Initiative (CAAFI)
- Contract mechanisms (e.g., SEMRS, PEARs-II)
- Volpe Transportation Center
Community Noise from Aircraft

Aircraft Noise

- Engine Fan & Jet Exhaust
- Undercarriage
- High lift system

Landing Takeoff Cycle

- Approach: 2,000 m from threshold
- Sideline: 450 m from runway edge
- Flyover: 6,500 m from brakes off

Community Exposure

Community exposure set by aircraft types and operational tempo over day and night

All noise sources contribute to acoustic signature – both at takeoff and during landing
Commercial Aircraft Noise Evolution

Cumulative Noise Level Relative to Stage 3 (EPNdB)

Year of Certification

STAGE 2
- B737-200
- DC-9-10
- DC8-55F
- B707-300
- B727-100

STAGE 3
- B747-100
- 747-100F
- MD10-10F
- DC9-14
- A300B2/B4F
- B767-200
- B737-300
- MD83
- MD87
- A310-300
- A320-200
- B747-400
- B747-400
- B737-800
- A300F
- B737-900

STAGE 4
- B777-200
- A340-300
- MD717-200
- A340-600
- MD90-30
- A380-800
- B747-8
- B787-9RR
- A320CFM
- A350-941

STAGE 5
- B737-8
- B787-9GE
- A320PW

Federal Aviation Administration
Noise Reduction through Technology

- Noise improvements have come with fuel efficiency gains
- Increased engine bypass ratio

- Simplified high lift systems

Images from airliners.net
A 93 percent decrease in community noise exposure while increasing enplanements by 340 percent – the noise experience is very different today then decades past and we expect it to continue to evolve.
Today’s Situation

- Aircraft noise from 1970s is different than aircraft noise today. Aircraft from 1970s produced the same acoustic energy as 10 to 30 aircraft operations today.

- A few, but relatively loud, events in 1970s would result in DNL 65 dB. Many, relatively quiet events today would also result in DNL 65 dB. However, noise experience would be very different.

- Precision navigation is being implemented to increase the safety and efficiency of the NAS. It also leads to a reduction in the overall number of people exposed to noise from aircraft operations.
Efforts Relating to Aircraft Noise

Understanding Noise
• Improving modeling capabilities
• Examining relationship between noise and annoyance, sleep, cardiovascular health and children’s learning
• Evaluating current aircraft, helicopters, commercial supersonic aircraft, unmanned aerial systems, and commercial space vehicles

Outreach
• Enhanced community involvement
• Increase public understanding

Reducing Noise at the Source
• Aircraft technologies and architecture
• Noise standards

Mitigation
• Vehicle operations
• Sound insulation program

For more information:
Aircraft noise: www.faa.gov/go/aviationnoise/
ASCENT: www.ascent.aero
CLEEN: www.faa.gov/go/cleen/
MITRE: www.mitre.org/
Volpe: www.volpe.dot.gov/
Aviation Environmental Design Tool (AEDT)

- Computes noise, fuel burn and emissions simultaneously
- Can analyze airport, regional, national, and global scales
- Required for all regulatory actions
- Also in use by 428 international users from 36 countries

AEDT Development Plan

- Current version of tool, AEDT2d
- Developing AEDT3 with public release planned in 2019
 - Improved aircraft performance module
 - Improved takeoff weight and thrust modeling
 - Improved capabilities at lower noise levels
- Laying ground work to incorporate airframe noise more explicitly in AEDT4 with a planned 2022 release

For more information on AEDT or to download it, please visit: https://aedt.faa.gov/
Research Areas on Noise Impacts

• **Annoyance**
 – In 2014, FAA initiated a national survey to measure public annoyance to aircraft noise, as part of FAA’s broader research portfolio related to aircraft noise
 – Responses from over 10,000 people living near 20 U.S. airports were collected
 – The survey results and a draft report are being reviewed by the FAA in coordination with the Department of Transportation and other federal agencies

• **Sleep Disturbance**
 – Conducted field studies to test different equipment viability
 – Have begun preparations for a national study
 – Determine what, if any, impact aviation noise has on sleep

• **Cardiovascular Health**
 – Associating historic, modeled noise levels with existing epidemiological studies
 – Determine what, if any, correlation exists between cardiovascular disease and aviation noise

For more information:
- PARTNER Project 44: http://partner.mit.edu/projects/aviation-related-noise-effects-elderly
- ASCNET Project 003: https://ascent.aero/project/noise-impact-health-research/
- ASCENT Project 017: https://ascent.aero/project/noise-exposure-response-sleep-disturbance/
Efforts Relating to Aircraft Technology

Continuous Lower Energy, Emissions & Noise (CLEEN)
- FAA led public-private partnership with 100% cost share from industry
- Reducing fuel burn, emissions and noise via aircraft and engine technologies and alternative jet fuels
- Conducting ground and/or flight test demonstrations to accelerate maturation of certifiable aircraft and engine technologies

<table>
<thead>
<tr>
<th></th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Frame</td>
<td>2010-2015</td>
<td>2016-2020</td>
<td>2021-2025</td>
</tr>
<tr>
<td>FAA Budget</td>
<td>~$125M</td>
<td>~$100M</td>
<td>TBD</td>
</tr>
<tr>
<td>Noise Reduction</td>
<td>25 dB cumulative noise reduction cumulative to Stage 5 and/or reduces community noise exposure (new goal for Phase III)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOX Emissions</td>
<td>60% landing/take-off NOX emissions</td>
<td>75% landing/take-off NOX emissions (-70% re: CAEP/8)</td>
<td></td>
</tr>
<tr>
<td>Fuel Burn</td>
<td>33% reduction</td>
<td>40% reduction</td>
<td>-20% re: CAEP/10 Std.</td>
</tr>
<tr>
<td>Entry into Service</td>
<td>2018</td>
<td>2026</td>
<td>2031</td>
</tr>
</tbody>
</table>

*Notional

For more information on CLEEN program: http://www.faa.gov/go/cleen
Opportunities for noise reduction:
– Airlines determine what aircraft fly and when
– There might be opportunities to change where aircraft fly (through precision navigation) and how aircraft are flown

Concepts being evaluated:
– Route changes
– Thrust / speed management
 – Noise abatement procedures
 – Manage thrust and configuration to lower noise on takeoff and approach
– Vertical profile
 – Continuous climb operations
 – Continuous descent arrival
 – Modified approach angles
 – Staggered or displaced landing thresholds
– Introduction of systematic dispersion
Aircraft Emissions and Air Quality

Fuel composition and engine design determine emissions

Tank-to-Wake Actual Combustion Emissions

Fuel: $C_nH_m + S$

Air: $N_2 + O_2$

Weighted Mean Fuel Sulfur Content (PPM)

<table>
<thead>
<tr>
<th>Region</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East</td>
<td>446</td>
<td>321</td>
</tr>
<tr>
<td>US Gulf</td>
<td>858</td>
<td>800</td>
</tr>
<tr>
<td>US West</td>
<td>240</td>
<td>395</td>
</tr>
<tr>
<td>Nationwide</td>
<td>709</td>
<td>677</td>
</tr>
</tbody>
</table>

Atmospheric transformation, dispersion and removal determine pollutant concentration

Population Exposure and Health Impacts
Particulate Matter

- Epidemiological studies link long-term exposure to fine Particulate Matter (PM$_{2.5}$) to increased risk of premature mortality
 Dockery et al. (1993); Pope et al. (2002); WHO (2008); Pope et al. (2009); USA EPA (2011)

- Particulate Matter consists of particles and liquid droplets
 - Particulate Matter = PM$_{10}$ = diameter \leq 10 μm (could enter lungs)
 - Fine Particulate Matter = PM$_{2.5}$ = diameter \leq 2.5 μm (could enter blood)
 - Ultrafine Particulate Matter = PM$_{0.1}$ = diameter \leq 0.1 μm (could enter systems)

- Particulate Matter from aircraft engines:
 - Soot (a.k.a., non-volatile PM, black carbon)
 - Volatile organic compounds from engine sulfate and nitrates & atmospheric ammonia
 - Aircraft engine PM is sufficiently small to qualify as ultrafine particulate matter

http://www3.epa.gov/airquality/particlepollution/basic.html
Aircraft Emissions in Perspective

• Based on analysis of top 66 airports in the U.S., aircraft operations contribute less than 1% of all ambient PM$_{2.5}$ in metropolitan areas.

• Aircraft activities contributes to 0.3% of the health impacts of combustion emissions in the U.S.

• Based on measurements in Seattle area, road traffic produces more PM, relative to aviation, at all sizes down to 20 nm. Aircraft produce more PM, relative to emissions, at sizes from 10 to 20 nm.
 – PM$_{0.1}$ is 100 nm and road traffic PM
Efforts Relating to Jet Fuel and Emissions

Testing and Modeling
- Measure emissions from engines using conventional and alternative jet fuels
- Improve atmospheric impact modeling capabilities
- Support and improve Certification/Qualification testing to ensure alternative jet fuels are safe for use
- Analysis to understand environmental and economic sustainability of alt fuels

Reducing Emissions
- ICAO Carbon Offsetting and Reduction Scheme (CORSIA)
- Engine standard (NOx and PM standards)
- Modifications to fuel composition
- Aircraft technologies
- Vehicle operations

Coordinate Activities
- Public-private partnerships
- State, regional, interagency, and international
Technology & Emissions Reduction

- Visible smoke emissions have been eliminated

- 50% reduction in CAEP Nitrogen Oxides (NOx) emissions standard since 1995

- CAEP/11 agreement on a particulate matter standard for aircraft engines – limits on both particle number and mass

- CLEEN Program - Low Emissions Combustors
 - GE TAPS II Combustor, LTO Nox: 55% below most recent CAEP std PM: 90% below CAEP visibility smoke limit
 - CLEEN combustor development ongoing with GE, Honeywell, Rolls Royce
Our Direction

- Utilizing a comprehensive approach to address environmental challenges
- Working with a broad range of stakeholders to understand issues and develop solutions
- Placing more focus on innovation to overcome noise and emissions challenges
- Continue to seek partnerships for our R&D efforts
- Continue to be responsive to priorities outlined in the FAA Reauthorization Act of 2018