Investing in the Maritime Industry
Fishermen’s Terminal Update Spring 2021

Notice: This meeting will be recorded. By accepting this invitation or participating in this call, you are providing consent to being recorded and potentially having the recording forwarded to other parties. If forwarding or reposting the invitation, this notice and the requirement to include this notice must be included.
Stephanie Jones Stebbins
Managing Director, Maritime Division
Presentation Overview

Fishermen’s Terminal Strategic Planning
- How we got here
- Strategic Plan for Fishermen’s Terminal

Development Plans
- Maritime Innovation Center (the “MInC”)
- Fishermen’s Terminal public site improvements

Elsewhere at Fishermen’s Terminal
- Develop interim strategy on Gateway site
- ADA Project to support accessibility objectives and comply with regulations
- Nordby Building Improvements

Maritime Innovation Center
- Status Update and Next Steps
What’s in the Future for Fishermen’s Terminal?

Homeport to the Alaska fishing fleet & a vibrant commercial destination
Implement Fishermen’s Terminal Strategic Plan (2016)

Scope:
- Develop vision and long-term strategic plan for Fishermen’s Terminal (FT) that leverages maritime and fishing activities and industries.

Goals:
- Continue to grow the economic value of the fishing and maritime cluster including the number of local jobs and business revenue.
- Improve overall financial returns that allow us to fulfill our commitment to the industry and taxpayers.
- Prioritize uses that support the commercial fishing industry, with a focus on anchoring the North Pacific Fishing fleet.
- Prioritize development that maximizes utilization of facility assets.
- Recognize and enhance Fishermen’s Terminal as a living community landmark.

Vision: Develop a living community landmark that supports the Maritime industry
Fishermen’s Terminal Strategic Vision

“Develop a living community landmark that supports the Maritime industry”
Working with Concepts from Design Workshops

1. Maintain industrial character
2. Improve the experience for the public in visiting FT
3. Workforce development – increase FT’s role
4. Exploit the gateway aspect of the old bank site
5. The ground plane is precious
6. Parking needs new approaches
7. Meeting space desired
FT Redevelopment
Projects/Boundaries

- Maritime Innovation Center (MInC)
- Site Improvements
- Gateway Building
- Public Right of Way Improvements

Opening 2024
Paused till 2026
Enhance the Public Experience

- **Tell** the history, impact of fishing industry
- **Enhance** site safety for visitors and fishers
- **Explore** partnership opportunities
FT Site Improvements

LANDSCAPE
- Landscape Planting
- Parking Striping
- Crosswalk Improvements
- Site Furniture

SIGNAGE
- Interpretative Signage
- Wayfinding Signage
- New Monument Sign

ELECTRICAL
- Site Lighting
Support and develop the future of the maritime industry with our industry partners.

Maritime Blue Innovation Accelerator
Maritime Innovation Center
Status Update

ACHIEVEMENTS
• Cleared second cycle of the Shoreline Substantial Development Permit (SSDP) review
• Secured $5,000,000 State funding
• Completed 60% Design

FEATURES
• Innovation center for advancing/incubating a generation of new maritime focused businesses

NEXT STEPS
• Complete Design & Permitting in 2021 and build concurrently with Site Improvements starting in 2022
Maritime Innovation Center and Site Improvements
Timeline

- 2021: finish design
- 2022: Bid/award, Start construction
- End-of 2023: complete
SUSTAINABILITY TARGET - MInC

FULL RED LIST

Polyvinyl Chloride (PVC) • Cadmium • Chlorinated Polyethylene and Chlorosulfonated Polyethylene • Asbestos Chlorobenzenes • Chlorofluorocarbons (CFCs) and Hydrochlorofluorocarbons (HCFCs) • Chloroprene (Neoprene) • Halogenated Flame Retardants (HFRs) • Chromium VI • Chlorinated Polyvinyl Chloride (CPVC) • Formaldehyde (added) • Hexavalent Chromium (Hex 6) • Lead (added) • Mercury • Polychlorinated Biphenyls (PCBs) • Perfluorinated Compounds (PFCs) • Phthalates • Polyvinylidene Chloride (PVDC) • Short Chain Chlorinated Paraffins • Lead • Wood treatments containing Creosote, Arsenic or Pentachlorophenol • Formaldehyde • Volatile Organic Compounds (VOCs) in wet-applied products • Alkylphenols • Asbestos Bisphenol A (BPA)

NET POSITIVE ENERGY

NET POSITIVE WATER

Living Building Challenge (LBC) Certification
HIGH-PERFORMANCE ENVELOPE
Triple-glazed, low-e windows and highly-insulated walls and roofs minimize heat loss and gain through the envelope, reducing demands on heating and cooling systems.

SALVAGED MATERIALS
Heavy timber structure is reused in place, reducing the embodied carbon footprint of the structure and saving valuable resources.

NET POSITIVE ENERGY
Photovoltaic panels on roof generate more than enough electricity to offset entire building energy use and provide resiliency.

DAYLIGHT AND VIEWS
Windows and skylights provide high-quality views to Salmon Bay and allow spaces to be naturally daylit for most of the year, reducing use of electric lighting.

REDUCED CARBON EMISSIONS
Efficient all-electric HVAC systems eliminate demand on fossil fuels and reduce energy use while electric vehicle charging stations and accommodations for bicycles promote alternative means of transportation.

NATURAL VENTILATION
Operable windows, skylights, and large ceiling fans provide fresh airflow and natural cooling to improve occupant comfort in addition to efficient mechanical ventilation with 100% outside air (no recirculated air).

RAINWATER CAPTURE
Rainwater falling on roof is captured in cisterns before being treated to potable standards for use inside the building.

RED LIST FREE MATERIALS
All new building materials used in construction are free of harmful Red List chemicals.

GROUND SOURCE HEAT EXCHANGE
Deep geothermal wells utilize constant ground temperature as a heat sink and heat source to provide highly-efficient heating and cooling.

GREY+BLACKWATER TREATMENT
All greywater from sinks is treated and recycled for irrigation use on site while blackwater from toilets is treated on site, reducing demand on municipal systems.

STORMWATER TREATMENT
All stormwater runoff from impervious surfaces is directed to bioswale where it is treated before discharge into Salmon Bay, helping to protect the marine habitat it interconnects to.