
S \ddot{A} Z \ddot{A} Ng r o u p

Port of Seattle Env & Sustainability Audit Support Services

MARITIME SOLAR PHOTOVOLTAIC FEASIBILITY STUDY

FINAL REPORT | DECEMBER 2024

Acknowledgements

Säzän Group would like to acknowledge the following organizations and individuals for their contributions that supported the success of this solar feasibility study over so many sites in a compressed timeline:

Port of Seattle

Alex Adams, Senior Manager, Environmental Programs Jacob Keith, Environmental Program Manager, Building Energy Diagnostician Cam Walker, Energy Program Senior Environmental Management Specialist

TKDA Structural Engineers

Dan Munn, PE, SE Craig Collins, PE

Project Context

This solar feasibility study for the Port of Seattle's maritime building portfolio is a critical component of the organization's broader sustainability and resiliency planning efforts, aligned with the Port's Century Agenda and Maritime Climate and Air Action Plan (MCAAP) goals. Rather than serving as a stand-alone report, this study should be considered complimentary to and in the context of the information, analyses and recommendations of previous work completed by the Port including the Sustainable Evaluation Framework and Seattle Waterfront Clean Energy Strategy. Similarly, implementation of the specific projects contained in this study will need to consider and evaluate the overall site-specific improvements for potential solar generation, associated layout, system sizing, battery storage device plans, and microgrid prospects. These efforts must also consider the capacity and lifespan of existing equipment.

While three buildings were shortlisted as "prioritized sites" in the report, this does not exclude other assessed sites as infeasible for solar. The top 11 solar installation projects are all deemed feasible based on constructability, energy performance, cost-benefit, and Port-identified priorities. However, all 50 sites could potentially be feasible with further structural and electrical evaluation. The preliminary assessment of all 50 sites offers a strategic framework for the Port's clean energy project development.

Thorough coordination of these interconnected studies should be considered to achieve a holistic approach to meet the Port's ambitious goals for greenhouse gas reduction, energy efficiency, and operational resilience, while ensuring that infrastructure investments are forward-looking and aligned with a transition to a clean energy future. This integrated approach reflects the Port's commitment to thoughtful and holistic planning as it advances sustainability and climate leadership.

Table of Contents

	1
I. Glossary	2
II. Executive Summary	4
2.1 Key Findings & Recommendations	5
2.2 Project Background and Purpose	8
III. Methodology	9
3.1 Remote Site Assessment	9
3.2 In-Person Site Assessment	
3.3 Solar Modeling, Energy Analysis, and Design	15
3.4 Financial Analysis	
3.5 Project Development	21
IV. Prioritized Site System Details	25
4.1 Terminal 91 – Smith Cove Cruise Terminal (303.8 kW-DC)	
4.2 Terminal 91 - C-175 (255.3 kW-DC)	
4.3 Shilshole Bay Marina - A-1 Admin Building (99.0 kW-DC)	
V. Incentives and Financing Considerations	43
	43
5.1 IRS Investment Tax Credit	
5.1 IRS Investment Tax Credit 5.2 Net metering and Distributed Generation	
5.2 Net metering and Distributed Generation	
5.2 Net metering and Distributed Generation 5.3 Grant Resources	

I. Glossary

AC-Nameplate Capacity

The rated capacity of a solar inverter, which is used to dictate the Interconnection Standards for renewable energy systems that tie into the utility grid.

Alternating Current (AC)

A type of electrical current that is usable in buildings and for appliances.

Azimuth Angle

The angle between true south and the point on the horizon directly below the sun¹.

Battery Energy Storage System (BESS)

Technology and equipment used to store electricity for use at a later time.

British Thermal Unit (BTU)

Standard unit of measurement for energy defined as the amount of energy required to raise the temperature of 1 pound of water by 1 degree Fahrenheit.

Curtailment

Forced reduction in solar PV production. Most commonly required to avoid export of solar PV power onto the grid to meet utility needs.

Direct Current (DC)

Electrical transmission and distribution that must be converted to Alternating Current for use in a building.

DC-Nameplate Capacity

The total combined rated capacity of solar panels within a photovoltaic array.

Energy Use Intensity (EUI)

A metric that quantifies a building's energy consumption per unit of its total floor area, typically expressed in kBTU per square foot per year.

Interconnection Standard

Utility requirements for how renewable energy systems connect to the grid.

Inverter Load Ratio (IRL)

The ratio of AC-Nameplate Capacity to DC-Nameplate Capacity in a solar array, a DC-to-AC ratio of 1.20 is typical, where the capacity of solar panels is greater than the inverter capacity.

Kilowatt Hour (kWh)

A measure of electricity defined as a unit of work or energy, measured as 1 Kilowatt (1,000 Watts) of power expended for 1 hour. One kWh is equivalent to 3,412 Btu.

Net Energy Metering

A solar incentive that allows utility customers to generate surplus solar energy that is sent back onto the grid for a billing credit at the retail utility rate.

Net Present Value (NPV)

Financial metric used to assess the profitability of an investment or project. The net difference between cash inflows and outflows over an extended period of time.

Photovoltaic (PV) Array

A renewable energy system that connects multiple solar PV modules and inverters to generate electricity.

¹ <u>https://www.energy.gov/eere/solar/solar-energy-glossary</u>

Point of Interconnection (POI)

The location where a solar PV array connects to the utility grid.

Pounds per Square Foot (PSF)

Standard unit of measurement for pressure.

Solar Access (kWh/kW/Year)

A measurement of the available solar resource based on the annual electricity generation per kilowatt of installed solar capacity.

II. Executive Summary

The increasing demand for renewable energy sources and the strategic importance of reducing carbon emissions has driven the Port of Seattle (hereafter referred to as the "Port") to explore the feasibility of solar energy projects. Moreover, the Port's Century Agenda calls for all new energy needs to be met though energy conservation or renewable sources. Additionally, enhancing the resiliency of the Port's energy supply is a critical consideration, ensuring that maritime operations remain robust and secure in the face of potential disruptions.

The solar feasibility study conducted in this effort is a critical element in broader, ongoing building energy assessments aimed at enhancing overall energy efficiency, reducing operational costs, and promoting sustainable practices across the Port's maritime facilities. The results of this feasibility study will be integrated into the wider building energy assessment currently being performed and will support project teams in their evaluation of sustainability opportunities under the Sustainable Evaluation Framework Policy. By doing so, the Port aims to ensure that renewable energy opportunities are aligned with other energy-saving and sustainability initiatives, creating a cohesive strategy that optimizes the Port's building performance. In addition, typical eligibility requirements for solar photovoltaic (PV) installation grants include conducting a feasibility study to determine prioritized project development opportunities.

The study will provide a comprehensive analysis of the potential for solar power generation that will inform decision-making for future investments in solar energy installation, support the Port's sustainability goals, enhance energy security, and improve the overall resiliency of the Port of Seattle.

Säzän Group, working with the Port (hereafter referred to as the "Port"), completed a solar feasibility study that examined 50 of the Port's maritime facilities on seven different campuses around Seattle. Over all sites, this study modeled and evaluated the feasibility of more than 5.2 megawatts (MW) of rooftop solar photovoltaics (PV) on Port properties. All 50 sites were evaluated for feasible solar PV installations using Port directed criteria, and a variety of qualitative and quantitative measures such as:

- Financial viability²
- Energy production potential
- Alignment with the Port's strategic energy goals
- Capacity of existing site and building infrastructure
- Maintainability
- Visibility
- System complexity

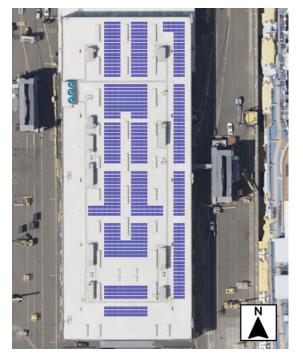
The study process included a winnowing strategy to distill all sites down and identify ten sites for additional analysis to refine modeling and research additional constraints. Of those ten, three sites

² "Financial viability" in the context of this study is defined as a project that has a positive Net Present Value within the normal useful life of the PV system.

were prioritized for deeper analysis and pre-design development due to their relative advantages and Port stakeholder criteria. Detailed study methodology and prioritized site system details are presented in this report.

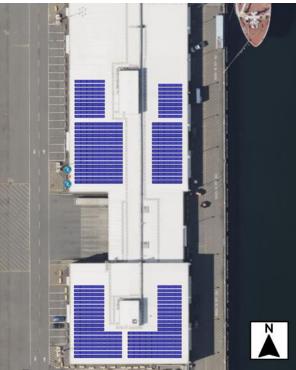
	Stoplight	Estimated Production	Year 1 I	Energy Savings
Property Name	Assessment	Power (kWh)	Estimat	e
Terminal 91 – Smith Cove Cruise Terminal		334,500	\$	36,493.95
Terminal 91 – C-175		281,100	\$	30,668.01
Shilshole Bay Marina – A-1 Admin		97,860	\$	10,676.53
Terminal 91 – C-173		493,700	\$	53,862.67
Terminal 91 – A-1 Warehouse		250,500	\$	27,329.55
Terminal 91 - Smith Cove Covered Walkways		192,000	\$	20,947.20
Pier 66 – Bell Harbor International Conference Center		35,290	\$	3,659.57
Pier 66 – Bell Harbor Marina Office		12,200	\$	1,265.14
Terminal 91 – C-155		402,900	\$	43,956.39
Fishermen's Terminal – N-9 Netshed		105,800	\$	9,701.86
Fishermen's Terminal – C-3 West Wall Office		32,350	\$	2,966.50

Figure 1: Site Screening Tool. Selection showing top 11 sites evaluated with respective modeled production and potential bill savings. In the Stoplight Assessment column, green indicates systems that performed well across evaluated metrics, red indicates systems that performed the least well, and yellow indicates systems with intermediate performance. In the Estimated Production column, values are color-coded to represent the modeled energy production of each system.


The top three sites identified through this study are Shilshole A-1, Terminal 91 C-175, and Terminal 91 Smith Cove Cruise Terminal. The top three sites are campus metered with high baseline energy demands; the power generated by each system is expected to be consumed onsite. As a result, none of the systems in this report are anticipated to export power from Port campuses to the grid. These prioritized solar project development opportunities were initially reviewed by Port staff for pre-design and, if chosen by the Port or its tenants to move ahead with a project in the future, are expected to provide cost effective, constructable, code-compliant, high performing installations that help lower energy costs while strengthening environmental stewardship at Terminal 91 and Shilshole Bay.

2.1 Key Findings & Recommendations

Of the 50 sites evaluated, the following solar PV arrays are the top three locations—hereafter referred to as priority locations—that are recommended for further consideration by the Port and development by project sponsors:



Terminal 91 – Smith Cove Cruise Terminal (303.8 kW-DC)

Payback year:	15
NPV (2024 USD):	\$63,700
ROM cost of O&M (Year 1):	\$3,000
ROM total installed cost estimate (with Port overhead premium):	\$1,044,302
ROM decommissioning estimate (2050 USD):	\$51,400
System Size (kW-DC):	303.8
Estimated cost per Watt (before Port overhead):	\$2.75
Estimated cost per Watt (after Port overhead):	\$3.44
Oct 2024 Utility Rate (\$/kWh):	\$0.1091

Terminal 91 – C-175 Commercial (255.3 kW-DC)

	15
Payback year:	
NPV (2024 USD):	\$38,000
ROM cost of O&M (Year 1):	\$2,600
ROM total installed cost estimate (with Port overhead premium):	\$855,980
ROM decommissioning estimate (2050 USD):	\$42,400
System Size (kW-DC):	255.3
Estimated cost per Watt (before Port overhead):	\$2.70
Estimated cost per Watt (after Port overhead):	\$3.38
Oct 2024 Utility Rate (\$/kWh):	\$0.1091

Shilshole Bay Marina – A-1 Administration Building (99.0 kW-DC)

Payback year:	15
NPV (2024 USD):	\$16,500
ROM cost of O&M (Year 1):	\$1,000
ROM total installed cost estimate (with Port overhead premium):	\$290,106
ROM decommissioning estimate (2050 USD):	\$16,600
System Size (kW-DC):	99.0
Estimated cost per Watt (before Port overhead):	\$2.34
Estimated cost per Watt (after Port overhead):	\$2.93
Oct 2024 Utility Rate (\$/kWh):	\$0.1091

Overall, this project identified numerous cost-effective and constructable solar PV array concepts on many Port facilities. The top 11 solar installation projects are all considered feasible in the context of constructability, energy performance, cost-benefit, and Port-identified priorities. However, all 50 sites may be feasible pending further structural and electrical evaluation. The preliminary evaluation conducted for all 50 sites provides a strategic framework for clean energy project development for the Port.

Key findings for the prioritized sites include the following considerations:

- All three system concepts are expected to achieve **payback in 17 years or less**, which is within the typical 25-year warranty period for solar PV modules.
- Combined energy savings of the prioritized sites are expected to be approximately **\$77,800** in the year after construction, not including potential rebates, incentives, or grants.
- All three system concepts construction cost estimates fall within typical Washington Department of Commerce grant funding limits (\$400,000-\$3,000,000).
- Made-in-Washington solar modules from Silfab Solar are proposed as the basis of design. Washington-made modules will support efforts to receive the domestic content bonus from the IRS Investment Tax Credit (see section 5.1).

Outside of constructing the three priority system concepts from this report, additional recommendations include the following:

• Complete the roof replacement project at Smith Cove Cruise Terminal prior to any solar PV installation.

- Add building-level metering data to the site selection tool (Appendix A) for more granular evaluation of potential benefits of solar PV.
- Perform similar revenue grade evaluations for the remaining facilities within the Port's portfolio.
- When a selected project and timeline is established, identify specific grants and incentives to pursue that best align with that timeline and project scope.

2.2 Project Background and Purpose

This feasibility analysis represents an important and significant step towards the sustainability goals of the Port, the City of Seattle, King County, and Washington State. By targeting a wider, campuslevel approach to building evaluations, the Port has created a more holistic image of renewable energy possibilities on your properties. This study aligns with the Strategic Objectives of the Port of Seattle Century Agenda³, specifically Goal 4 "Be the greenest and most energy-efficient port in North America", the emission goals of being 50% below 2005 levels by 2030 and net zero or better by 2040 for scope 1&2 emissions, and carbon neutral or better by 2050 for scope 3 emissions⁴. The City of Seattle has also fostered a strong commitment to carbon footprint and emissions reductions. This project helps move the Port towards a lower Greenhouse Gas future which follows the goals within the Seattle Building Energy Performance Standard (BEPS)⁶.

This project and the prioritized system concepts, if implemented, can advance the Maritime Climate and Air Action Plan (MCAAP)⁷. Although this project, and distributed renewables may not reduce Port local emissions from cargo handling or berthed vessels, it can provide the necessary infrastructure to reduce load on electrical distribution systems on Port terminals and properties that may otherwise face constraints in the future. This reduced load may then allow broader electrification of vehicles and shore power without requiring expensive and time-consuming upgrades of Port and SCL medium voltage feeders.

⁴ <u>https://www.portseattle.org/page/measuring-greenhouse-gas-emissions-port-</u>

³ <u>https://www.portseattle.org/page/century-agenda-strategic-objectives</u>

seattle#:~:text=The%20Port%20of%20Seattle%20cut,by%2050%20percent%20by%202030.

⁶ <u>https://www.seattle.gov/environment/climate-change/buildings-and-energy/building-emissions-performance-standard</u>

⁷ <u>https://www.portseattle.org/page/charting-course-zero-port-seattles-maritime-climate-and-air-action-plan</u>

III. Methodology

The solar feasibility study methodology details the procedures, assumptions, and considerations applied to each Maritime Port facility.

3.1 Remote Site Assessment

A remote site assessment for each location for all 50 Maritime Port facilities was conducted to evaluate solar feasibility for project development.

This remote assessment process involved reviewing the physical and environmental characteristics of each facility using available satellite imagery and Port-provided documentation. Preliminary solar models were developed for each site, assessing roof sizes, types, obstructions, orientations, and pitches based on the available information. This data informed the preliminary solar PV models produced in Helioscope modelling software.

The solar models produced using Helioscope modelling software, included the following design parameters:

- 1. Including walking paths for larger arrays to avoid the 150-foot array span limit (Seattle Fire Code 2021 section 1205.3.2) and provide easy maintenance access for rooftop equipment.
- 2. Microsoft Bing satellite imagery was typically used over other datasets for its improved alignment with the LIDAR data. LIDAR data was used for the shading analysis from adjacent structures and trees. Additionally, LIDAR was used to identify roof obstructions, pitch, and azimuth.

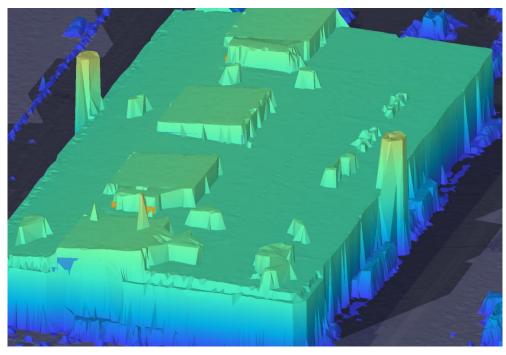


Figure 2: T91 A-1 Warehouse Building LIDAR showing roof slope, azimuth, and obstructions

3. Visible obstructions (parapet walls, skylights, and rooftop mechanical equipment) that were able to be identified from the available satellite imagery and street-view imagery were

modeled as "keepout" areas to ensure realistic solar install areas, accessibility, and shading impacts to the array.

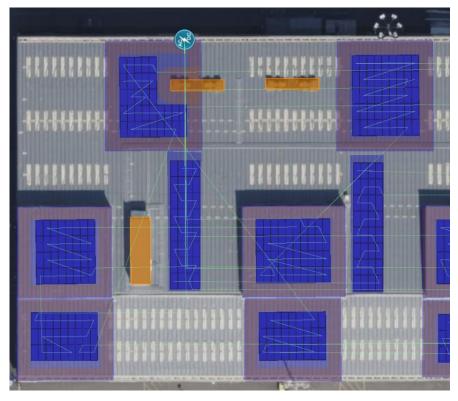


Figure 3: T91 A-1 Warehouse Building with "keepouts" in orange to provide more accurate shading in modeling. Heights and dimensions are then confirmed through site walks for shortlist facilities.

4. For the Terminal 91 Smith Cove and Pier 66 facilities, cruise ships were inserted into versions of the solar models to identify shading impacts. To account for the transient nature of these obstructions to the available solar resource, a weighted average can be used to estimate actual performance impacts through the year.

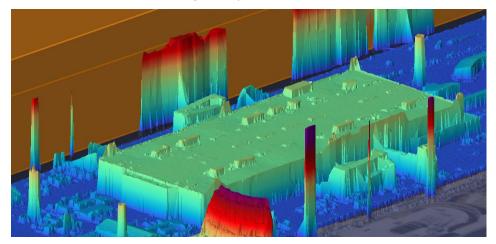


Figure 4: Smith Cove showing the large shading wall used to simulate a cruise ship. Limited LIDAR data was available (thin red features) and used to scale the "ship".

5. The default Helioscope value of 2% was used for the annual soiling level⁸. Constructed PV systems in the Pacific Northwest have not shown significant impacts from soiling due to regular rain washing. Washington State, located west of the Cascades is also expected to have negligible snow loss impacts⁹.

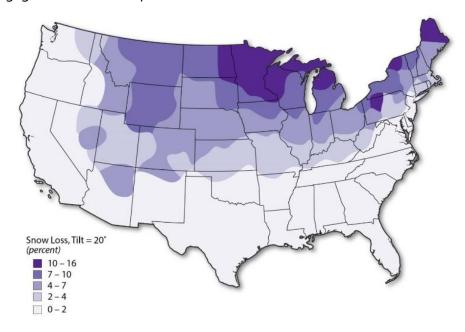


Figure 5: NREL Snow Loss Modeling; National figure from the referenced report. Map shows general trends in average snow losses as a percentage of annual energy production.

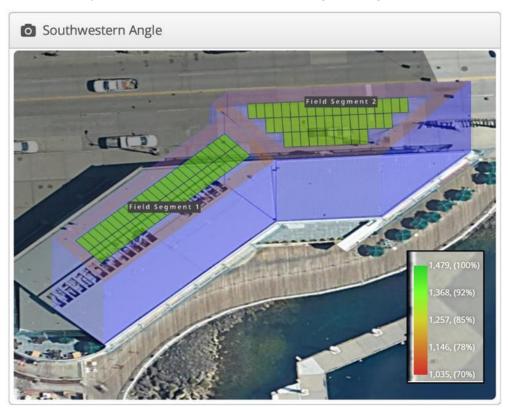
6. Default satellite-based ("prospector") weather data was used for modeling in this phase as a starting point for analysis.

The preliminary PV system models were developed for each facility using the parameters defined above. The preliminary models were then used to estimate annual solar energy production, overall performance, and shading impacts.

In preparation for the remote site assessment, the Port provided campus and utility feeder and transformer ratings and capacities from the Seattle Waterfront Clean Energy Strategy (SWCES) load forecast constraints analysis. This was in the form of a load forecasting report. These ratings were added to the screening tool to help identify any potential constraints on solar array sizing. Based on the available information at the time of the remote site assessment, no constraints on solar array size from medium voltage equipment were expected.

As a result of the evaluation described above, a ranked list of facilities was provided to the Port, including a shortlist of 10 properties that were recommended for further analysis. Facilities were organized by Port provided criteria into a color-coded "Traffic Light Assessment" matrix (see Figure 1 and Appendix A). Metrics considered in this assessment included but were not limited to:

⁸ In this study, "soiling level" refers to the accumulation of dirt, dust, pollen, or other debris. The soiling level value represents the percentage of potential energy output lost due to soiling on the solar panels. ⁹ NREL Snow Loss Modeling: https://www.prel.gov/docs/fy17osti/68705.pdf Note: This model has been


⁹ NREL Snow Loss Modeling; <u>https://www.nrel.gov/docs/fy17osti/68705.pdf</u> Note: This model has been validated through field testing

a. Roof condition, roof type, geometry, complexity, and age (as identified from satellite imagery)

Figure 6: Overhead satellite imagery and Google Street View were both used to evaluate roof complexity and features. This image shows Terminal 102 Building A just above the highway parapet with a complex roof featuring a large number of scattered mechanical rooftop units.

b. Preliminary solar model performance including shading impacts.

Figure 7: Shading render of Anthony's Restaurant on Pier 66. Light color green indicates no shading impacts.

- c. Available roof area for solar modules with consideration for obstructions from rooftop equipment, maintenance access, and fire safety access,
- d. Zoning/permitting restrictions
 - i. Seattle City Light Customer Access Management (CAM) 420 review for height clearance of up to 4' above roof for solar
 - ii. All sites are modeled in compliance with National Electrical Code (NEC) and National Fire Protection Association (NFPA) and first responder access requirements
- e. Rough Order of Magnitude (ROM) costs and payback periods.

Additional screening criteria and site data to evaluate were provided by the Port throughout the feasibility study process and are captured in the screening tool spreadsheet (Appendix A) for future reference.

3.2 In-Person Site Assessment

After completion of the remote site assessment, the Port of Seattle selected the following 11 sites for in-person site assessments (ordered according to the "traffic light" score at that time):

- 1. Shilshole Bay Marina A-1 Admin Building
- 2. Terminal 91 C-175
- 3. Terminal 91 A-1 Warehouse
- 4. Terminal 91 C-173
- 5. Terminal 91 Smith Cove Cruise Terminal
- 6. Terminal 91 Smith Cove Cruise Terminal Covered Walkways¹⁰
- 7. Pier 66 Bell Harbor Conference Center/Bell Street Cruise Terminal
- 8. Pier 66 Bell Harbor Marina Office
- 9. Terminal 91 C-155
- 10. Fishermen's Terminal N-9 Netshed
- 11. Fishermen's Terminal C-3 West Wall Office

During the walkthroughs at these facilities, the assessment team verified and clarified factors that affect solar feasibility to validate and update the model inputs and identify structural and other considerations for screening. Items assessed included:

i. Verification of roof type/conditions. This includes the physical properties of the roof, such as pitch/azimuth, material type, appearance, and obstructions.

¹⁰ The Covered walkways are a part of the Smith Cove Cruise Terminal site but were tracked separately due to the expectation that any solar PV installation would be electrically independent from the Cruise Terminal due to having no preexisting electrical infrastructure.

Figure 8: Smith Cove Roof showing wear and discoloration with numerous patches.

- ii. Generation of field photographs as documentation of existing conditions.
- iii. Verification of relevant measurements such as parapet heights and standing seam profiles.

Figure 9: Shilshole A-1 Administrative Building standing seam roof profile. This allows designers to specify attachment hardware for more accurate construction bidding.

- iv. Evaluation of accessibility for installation of a solar system and future maintenance.
- v. Development of a qualitative structural assessment to evaluate structural feasibility of installing PV arrays on the subject roofs.
- vi. Assessment of electrical infrastructure at each site in relation to potential solar array options, including needed upgrade requirements and associated upgrade costs, and identification of potential infrastructure deficiencies that would inhibit the installation of a PV system. These assessments will need to be verified by Port Engineering Services and Port Waterfront Project Management cost estimating team.

Figure 10: Fisherman's Terminal – Building C-3 Main panel which appears original construction from the 1950s. The age and residential voltage (240/120) of the building are some factors that made this building a lower priority.

vii. General opportunities and constraints the building poses on solar feasibility.

3.3 Solar Modeling, Energy Analysis, and Design

The preliminary array models that were developed in the remote site assessment were refined after the in-person site assessment based on information gathered from the in-person site assessments. Refinement efforts included more specific roof obstruction information, roof slopes, maintenance and other considerations from discussions with site operators. Due to significant issues identified on site, the following buildings were eliminated from further evaluation immediately by the Port:

- Terminal 91 C-155 Warehouse
- Fishermen's Terminal N-9 Netshed Storage
- Fishermen's Terminal C-3 West Wall Office

The project team updated the screening tool spreadsheet with site assessment findings and associated updated solar model information and provided this to the Port with a review meeting. After reviewing the results, the Port selected 8 of the 11 sites assessed in person for further evaluation during the Solar Modeling, Energy Analysis, and Design phase:

- 1. Terminal 91 A-1 Warehouse
- 2. Terminal 91 Smith Cove Cruise Terminal
- 3. Terminal 91 Smith Cove Cruise Terminal Covered Walkways
- 4. Terminal 91 C-175
- 5. Terminal 91 C-173
- 6. Shilshole Bay Marina A-1
- 7. Pier 66 Bell Harbor Conference Center
- 8. Pier 66 Bell Harbor Marina Office

Solar Feasibility Basis of Design

- 1. Solar PV Modelling Assumptions:
 - a. Weather data was updated from satellite-based ("NREL prospector," see section 3.1 item 6) to the ground-based dataset from Boeing Field (TMY3) to better reflect local conditions.
 - b. Racking type was updated based on site assessment observations: IronRidge family of products used for model details; BX family for ballasted arrays, and XR Rails for flush mount.
 - c. SolarEdge brand inverter equipment was used throughout all designs for an available, high efficiency, manufacturer with excellent reputation. A variety of size ranges were used depending on the site array concept.

Figure 11: Example showing two SolarEdge inverters mounted to a building wall. This family of inverters was used as basis of design so any Port installations will be standardized across sites

d. SolarEdge brand optimizers (DC-DC converters) were used throughout all designs to provide compatibility with the inverters and provide module-level control required by

rapid shutdown requirements. The P1100 model selected allows the connection of two modules for one optimizer which is common industry practice for efficient installations.

- e. Silfab Solar modules (490W) were used throughout all designs. This is a common, currently manufactured, commercial solar module with an American manufacturer with headquarters based in Washington State.
- f. The designs for the selected buildings were completed in accordance with local code requirements regarding structural capacity, seismic safety, and fire safety for commercial and industrial applications.
- g. The solar models were designed to preserve accessibility to be able to access key areas of the roofs for maintenance of the array and existing rooftop equipment.

Figure 12: Image shows a ballasted rooftop array like the ones proposed for Smith Cove and C-175. The array is designed around a vent pipe and two drains (top of image) with an access pathway between array sections.

- h. When considering the impacts of marine environments on solar equipment, one important factor to take into account is salt corrosion. All equipment used as the basis of design is suitable for Port maritime facilities. Details about manufacturer certifications are provided in the Project Development section and in equipment datasheets. Equipment datasheets for each of the final 3 prioritized systems are located in Appendices C, D, and E.
- i. A 4-foot buffer from fire vents, skylights, and other rooftop equipment (Seattle Fire Code 2021 section 1205.3.3).
- j. A 6-foot buffer from the roof edge and parapets (Seattle Fire Code 2021 section 1205.3.1).

Figure 13: Smith Cove roof showing rooftop air handlers and skylights accommodated with access pathways and maintenance clearances to comply with Fire Code.

- 2. Estimated annual energy production of the modelled solar installation as kWh per year.
- 3. System losses were included in the model from the effects of annual soiling and shading impacts from transient features (i.e., cruise ships) and mechanical equipment.
- 4. Review of the historical energy data that was provided by the Port. Factors included electricity consumption patterns, peak demand times, and cost analysis.
- 5. Different panel technologies were evaluated during the study against considerations of site conditions, energy goals, and installation cost. Monocrystalline, mono-facial modules were used as basis of design for their much higher availability and cost performance as compared to other technologies.
- 6. The storage technologies were analyzed to identify potential benefits for the Port. However, as these sites are part of campuses, utility-scale battery systems would be required to provide the desired demand charge reduction with the utility. Therefore, battery equipment was not evaluated as part of this study.
- 7. Estimated EUI reduction from the installation of PV systems was not possible with the building-level data available during the study. Campus or building electricity consumption (in kWh) reduction was calculated and is provided in the screening tool.

After the analysis of the refined solar models was completed, Säzän prepared a Traffic Light Assessment Matrix which ranked the projects against the grid/building capacity, installation cost and complexity, energy production, and additional evaluation criteria guided by the Port.

3.4 Financial Analysis

Following the refinement of the solar modelling, energy analysis, and system design, a financial analysis was performed for the eight sites identified by the Port. The cost analysis includes initial equipment cost depending on the proposed configuration; life-cycle equipment maintenance, repair, and replacement costs and the utility billing credit for new solar PV at the 8 shortlisted sites.

Each site's modeling process included detailed parametric analysis of multiple system concepts to arrive at optimal value solutions. Typical methodology for each site includes the development of a maximum system option for all available roof areas, a minimum capacity option for solar readiness, and optimized or recommended option based on system performance. This methodology includes evaluating solar PV production, shading impacts, code compliance, and overall performance. Specific metrics are provided below:

- 25-year project life, 2% social discount rate¹¹
- 2% inflation rate annually throughout project life.
- 4% annual utility escalation rate throughout project life.
- Assumes 30% Investment Tax Credit (ITC) direct payment occurs the year after construction (Year 1).
- PV inverter replacement is required approximately every 15 years. Replacement costs are projected based on their present-day value, adjusted for a 2% annual inflation rate compounded over the typical 15-year useful life.
- Decommissioning costs were estimated to be 3% of the installed cost, then adjusted for inflation over the expected life of the system. This was generated from the New York State Energy Research and Development Authority (NYSERDA) Decommissioning Solar report¹² and National Renewable Energy Laboratory (NREL) analysis of PV system unit costs for the same year¹³ for the studied system size.
- \$10/kW annual solar O&M costs, adjusted for inflation over the project lifespan.
- PV degradation rate set based on typical manufacturer datasheets, which is 0.5% per year.
- Generated electricity is valued at the utility billing rate for each site. To capture the value of the power generated by the Port's PV system, a production meter may be used to bill tenants for net energy consumption.
- Demand charge savings are evaluated as zero for all systems due to lack of certainty around coincident demand. Without large-scale battery installation at each site, it is unlikely that campus-level demand charges will be reduced by solar PV installations.
- Port overhead percentage of 25.1% for internal engineering support for design review, project management, construction management, testing & inspection, safety, contract administration, as well as environmental support and reviews. This rate will need to be

¹¹ <u>https://www.whitehouse.gov/cea/written-materials/2024/02/27/valuing-the-future-revision-to-the-social-discount-rate-means-appropriately-assessing-benefits-and-costs/</u>

¹² https://apa.ny.gov/Mailing/2021/05/LocalGov/NYSERDA-Decommissioning-Solar-Systems.pdf

¹³ <u>https://www.nrel.gov/news/program/2023/as-pv-market-evolved-in-the-last-year-prices-went-up-prices-went-down.html</u>

reevaluated with the design of each project which may affect the overall cost/benefit of each project.

• **Note:** total cost of ownership in sections below shown as a positive value when project generates net revenue over the 25-year project life.

Specific product options were used during modeling and are included for consideration. Säzän is an independent, third-party consultant and only provides specific product options to support the feasibility of any given option – alternative product options may be available and identified through the final design and specifications process. Product cut sheets for the respective systems are provided in Appendices C, D, and E of this report.

Solar PV system components applied for engineer's estimate of total capital expenditure include:

- Modules 490-Watt Silfab Solar Inc., SIL-490 HN as Basis of Design.
- Inverters The Bell Harbor Marina office uses an Enphase 3-phase 208Y Inverter, the remaining systems utilize SolarEdge Commercial three-phase inverters as Basis of Design.
- Racking Standing seam roofs evaluated with seam clamps (S5! Or equivalent) and IronRidge XR Family products. Ballasted mount racking used Iron Ridge BX Family products as basis of design.

Figure 14: Image shows an example installation on standing seam metal roofing like that proposed for Shilshole A-1. Clamps on the metal roof allow the array to be attached without requiring penetrations to the roof, limiting the risk of voiding the roof warranty.

Net Present Value Calculation

The Net Present Value (NPV) is a useful metric for evaluating investments over long time horizons. It is based on the concept of the time value of money (i.e., social discounting), which recognizes that a dollar today is more valuable than a dollar in the future. In the context of this report, the NPV represents the value of a photovoltaic system today, accounting for costs (installation, operation, maintenance, decommissioning) and benefits (utility bill savings, net metering credits), while

factoring in the effects of inflation, social discounting, and when the cash flows occur. The NPV can be calculated using the following summation formula:

$$NPV = \sum \frac{CF_n}{(1+r)^n}$$

Where:

- *CF*_t is the inflation-adjusted cash flow (cost and/or benefit) at time *n*. Detailed formulas for cash flow are provided in the Financial Formulas (Appendix F)
- *r* is the social discount rate
- *n* is the time period (year)

The sum above is evaluated for the life of the project. In the context of this feasibility study, the sum is evaluated from n=0 (installation) to n=25 (decommissioning). A positive NPV value reflects that the investment outperforms the effects of inflation and social discounting¹⁴, while a negative value reflects that the effects of inflation and social discounting outperform the cash flows from utility savings and net metering. For systems with negative NPV value estimates, a positive value can be achieved either by performing preventative maintenance to extend the useful life of the system or applying a reduced social discount rate.

3.5 Project Development

After completing the Solar Modeling, Energy Analysis, and Financial Analysis phases, the Port sought input from internal teams, including Planning, Engineering, Real Estate, Facilities, and Environmental. This feedback was compiled into a decision matrix (Appendix B) to streamline data presentation, enabling staff to document insights, share specialized knowledge about the proposed buildings, and address any concerns. Following this internal review, the Port selected the following three sites for final project development:

- 1. Terminal 91 Smith Cove Cruise Terminal
- 2. Shilshole Bay Marina A-1 Admin Building
- 3. Terminal 91 C-175 Building

The final development of the system options at the top three sites included the following:

- 1. Three alternatives were produced through the study process with the final designs prioritizing the following:
 - a. Cost Effectiveness, ROI, and simple payback. This included the provided Port overhead percentage added to installed cost estimates based on a \$/Watt system unit cost. These values are provided in the screening tool spreadsheet with further financial analysis and graphs in Section V.

¹⁴ <u>https://www.whitehouse.gov/cea/written-materials/2024/02/27/valuing-the-future-revision-to-the-social-discount-rate-means-appropriately-assessing-benefits-and-costs/</u>

- b. Build America, Buy America (BABA) compliance and/or Made in Washington. Details on equipment specifications in this section and corresponding equipment datasheets are provided in Appendices C, D, and E for the evaluated systems.
- c. Maximized energy production, sustainability, and resiliency.
- 2. A detailed structural analysis of the buildings, including a review of as-built structural drawings to verify the capacity of the structures to support the load of the PV systems. This analysis included considerations and verification of conditions from the on-site assessments.

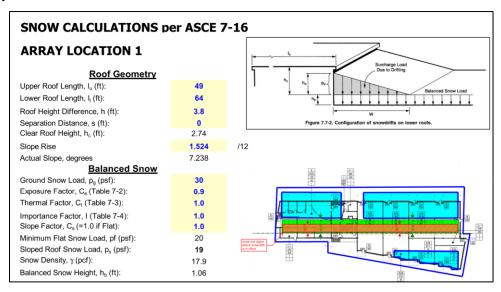
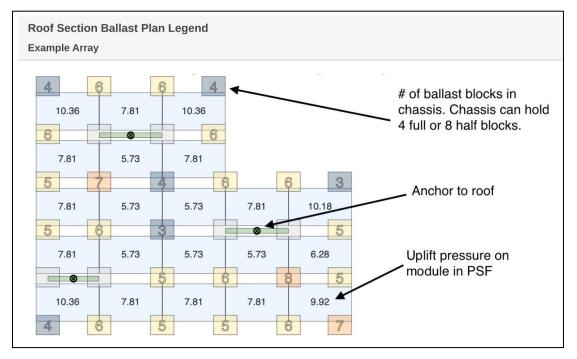



Figure 15: Excerpt from Shilshole A-1 Structural evaluation memo showing snow load calculation that includes analysis of areas subject to wind-driven drift build-up.

- 3. Assessment of the roof age warranty conditions for each site and how the installation of PV would affect the warranty conditions, including limitations or requirements set forth by the roof warranties.
 - a. In all cases, the roof warranty holders and installers must be coordinated with prior to installing arrays to ensure warranty terms are met, and new equipment is acceptable. Respective details can be found in the Constructability Considerations subsections of each prioritized system.
- 4. Development of preliminary racking and mounting designs for the PV systems at the selected sites to verify compliance with local codes, seismic standards, and Port engineering standards.
 - a. These preliminary racking designs accounted for design conditions of the building and local wind/snow conditions. The structural team was coordinated for the development of racking design to better understand code requirements at each site. Racking pre-design reports for the top three sites are provided in the appendices.

A Z A

GROUP

Figure 16: Example ballasted array plan from IronRidge designer software showing required ballasting, any required anchors, and uplift. Uplift pressure given in pounds per square foot (PSF).

- 5. Development of electrical drawings for the proposed solar PV systems at the selected sites to align with local electrical codes, fire safety regulations, and Port engineering standards. The drawings for any proposed solar array that moves forward as a project will need to be updated to account for the condition and capacity of on-site electrical infrastructure.
- 6. Specification of all major equipment and materials for the proposed PV systems:
 - a. During this study, products that are Made in Washington or compliant with Build America, Buy America (BABA) requirements were prioritized. The IronRidge racking products are available from US manufacturing lines¹⁵, and these product lines have been used throughout as the basis of design. Silfab no longer has an entirely US manufacturing line, but they are working towards opening a new facility in South Carolina¹⁶ which in the future may meet BABA and IRA domestic content requirements.
 - b. Products were selected that are marine grade rated. These are identified as meeting certain rigorous testing requirements for salt mist/spray resistance. The Silfab modules used as basis of design have passed IEC61701:2011 Level 5 Salt mist corrosion testing and are suitable for installation at port facilities¹⁷. Racking components are anodized or made of stainless steel for corrosion resistance.

- ¹⁶ <u>https://silfabsolar.com/domestically-produced-solar-energy-delivers-economic-benefits-for-the-us/</u>
- ¹⁷ SIL-HN Family install manual, Section 9.5; <u>https://silfabsolar.com/wp-content/uploads/2024/05/SILFAB-MAN-SSI-07-20240422.pdf</u>

¹⁵ <u>https://files.ironridge.com/IronRidge_Domestic_Content_Brochure.pdf</u>

SolarEdge markets their products as "saline resistant" and allows installation near the shoreline with no direct salt splash.

- c. All designs included grid connectivity through grid-tied inverter systems. This is necessary for both electrical safety and to allow export of excess energy.
- d. Power monitoring system equipment was included in the cost estimate and is standard with modern commercial inverters. (e.g. SolarEdge Monitoring)
- 7. Development of a turnkey cost estimate for all three system options. This was calculated with an estimated \$/Watt unit cost with escalations for expected site-specific considerations, and a 25.1% Port overhead added.
- 8. LIDAR analysis from modelling. This is provided in the appendices with the final solar model and shading reports.

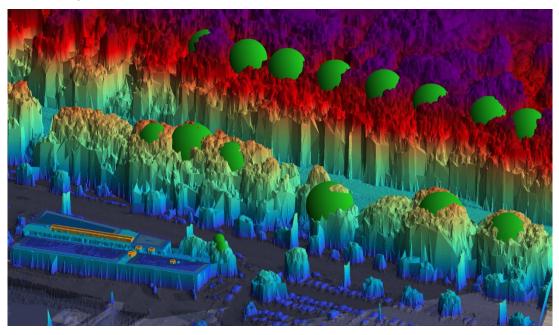


Figure 17: Helioscope LIDAR rendering showing Shilshole A-1 tree line to the east of the marina. The scale of the trees and slope is visible with LIDAR and simulated with the green tree "keepouts" to provide more accurate shading information.

9. Updated screening tool (Traffic Light Matrix, Appendix A)

Completion of the project development phase concluded with development and delivery of the structural roof capacity memos, roof age and warranty assessments, preliminary racking drawings, preliminary electrical drawings and one-line diagrams, and the cost estimate report for each of the three prioritized sites. This information is presented in Section V, Incentives and Financing Considerations.

IV. Prioritized Site System Details

The three prioritized sites selected for project development included in this analysis were evaluated based on input from the project team on system priorities. The solar modeling process included obtaining site information from public sources and project documents, then performing an iterative design process to determine cost effective concepts to fit the options desired. All three prioritized sites are outside of the Seattle City Light spot network boundary¹⁸, which reduce constructability concerns for interconnection.

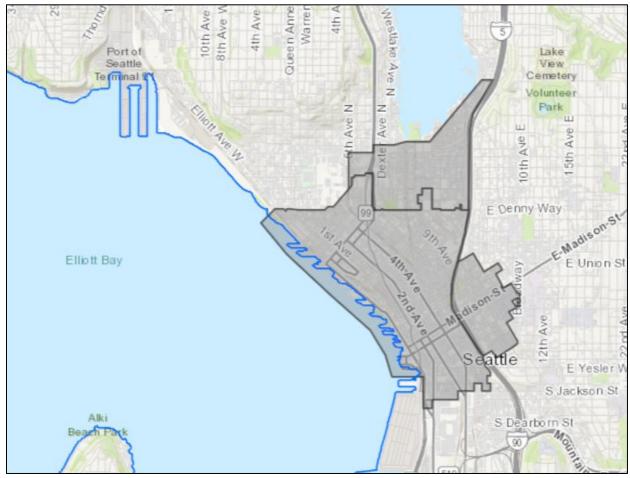
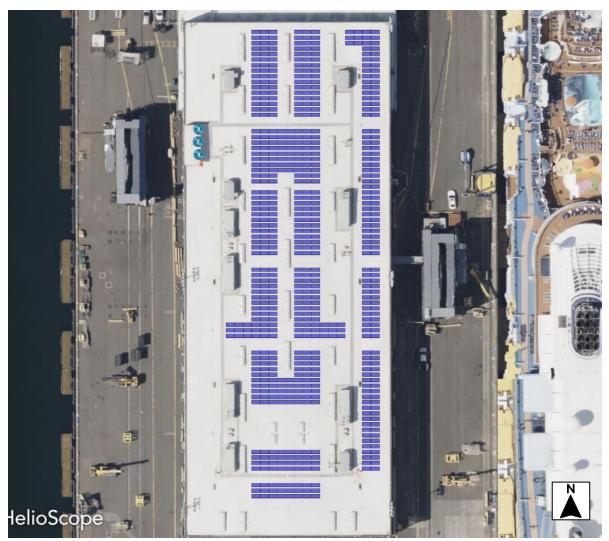



Figure 18: Seattle City Light spot network boundary indicated in grey.

¹⁸ <u>https://experience.arcgis.com/experience/0fc12827b542465595570c7b9aa447bf/</u>

4.1 Terminal 91 – Smith Cove Cruise Terminal (303.8 kW-DC)

Figure 19: Smith Cove Cruise Terminal showing solar modules on roof of building as arranged in the pre-design concept.

System Summary

This project concept consists of a ballasted, grid-tied, rooftop solar array on the Cruise Terminal. This building is a cruise-ship terminal with extensive open areas inside for large crowds. Luggage processing and storage areas occupy many areas on the ground floor. The array concept occupies more than half of the roof area limited by the existing roof configuration (e.g. rooftop air handlers, skylights) and necessary access pathways and shade exclusions. The area array size is expected to be limited by the available breaker space within the main electrical panel.

This project is evaluated as feasible but should not be pursued until the existing roof system is replaced.

Structural Considerations

TKDA has performed a structural assessment of the Smith Cove Cruise Terminal located in Seattle, WA to determine its ability to support the proposed ballasted rooftop PV array system including

modules, racking, and associated equipment. This assessment is based on the as- built structural and architectural drawings provided by the Port of Seattle. The original 2007 drawings are titled "Terminal 91 Cruise Ship Terminal" with KPFF as the Structural Engineer of Record (SEOR). The Smith Cove Cruise Terminal is a 2-story steel structure. The roof system is composed of a TPO membrane, gypsum, rigid insulation, and steel roof deck. Open web steel joists carry roof loads to W- shaped girders. The lateral system of the building utilizes vertical bracing.

The results of our analysis show that the existing framing is sufficient to carry proposed loading for the planned PV array as detailed in layout below. The preliminary racking design estimates an added weight of 4.55 pounds per square foot (psf) distributed dead load from the array which is within the 5psf limiting load in the field.

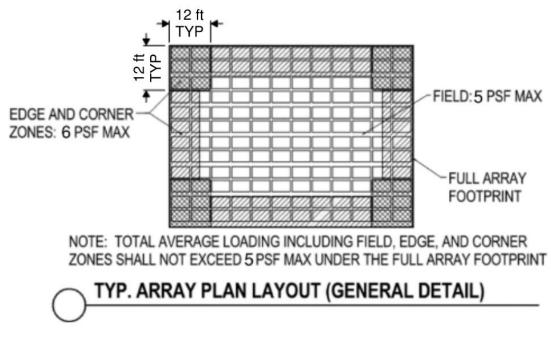


Figure 20: Structural Array Plan from engineering memo.

Electrical Considerations

The point of interconnection is recommended to be the main electrical panel located on the West side of the building on the ground floor. No size limitations are expected from the utility feed equipment as the building's two substations are fed directly from a 15kV substation switchboard. PV Array system size was limited to 265kW-AC during project development to enable use of a 400A-480/277V breaker. A spare slot this size appears to be present on the main distribution panel (SS-2) at the end for NEC Article 705 considerations. Another 400A spare is present on the other substation MDP (BS). Final design must confirm main panel bus constraints and arrangement is suitable for this size breaker.

Figure 21: Potential location for the expected 400A – 480/277V interconnection breaker in SS-2

Constructability Considerations

As mentioned in the summary, the existing roof condition is poor. The warranty expired January 15, 2024, and no solar PV installation is recommended prior to full replacement.

Figure 22: Smith Cove Roof showing wear and discoloration with numerous patches.

The size of the building provides flexibility in where to install array equipment. The storage room wall appears to have sufficient space for the expected equipment and is near the electrical room. Alternatively, the awning for roof access may provide sheltered areas for inverter equipment. Basis of design inverters (SolarEdge) are outdoor rated and designed to be suitable for areas near

saltwater. The building is large with many open areas on both floors, but equipment locations should not interfere with existing operations.

Figure 23: Room 111 storage proposed for inverter installation.

Cruise ship season is well-defined with a regular off-season. This will allow installation of the rooftop array with little to no impact to operations or tenants. The large stairwell access to the roof, with clear paths around the building both provide safe and efficient construction access to the proposed array area.

The Port identified this building as requiring a glare impact study for any array. Cruise ships are tall enough that morning or evening sunlight might reflect off the south-facing array elements and impact passengers or crew.

The inverters and other electrical equipment are recommended for installation within the building. Installing new electrical equipment within the building is expected to provide a climate-controlled, secure, environment for the inverters, which reduces the risk of premature failure and extends the life of the equipment.

System Summary Table - Smith Cove Cruise Terminal

Payback year (With 30% ITC):	15
NPV (2024 USD):	\$63,700
ROM cost of O&M (Year 1):	\$3,000
Estimated total installed cost	\$834,774
Estimated total installed cost	\$1,044,302
(with Port overhead premium applied):	
ROM decommissioning estimate (2050 USD):	\$51,400
System Size (kW-DC):	303.8
Estimated cost per Watt (before Port overhead):	\$2.75
Estimated cost per Watt (after Port overhead):	\$3.44
Oct 2024 Utility Rate (\$/kWh):	\$0.1091

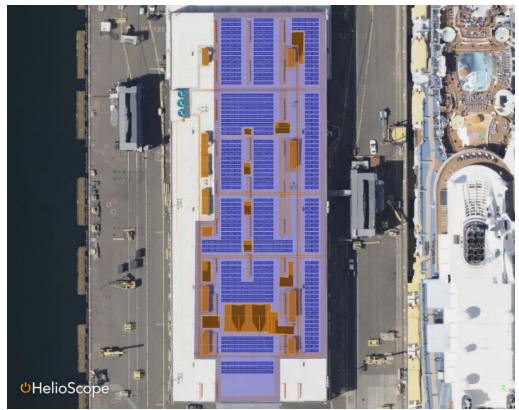


Figure 24: Final Helioscope Model for Smith Cove Cruise Terminal. Areas in orange are designated "keepout" areas, including mechanical equipment, access pathways, skylights, and roof drains.

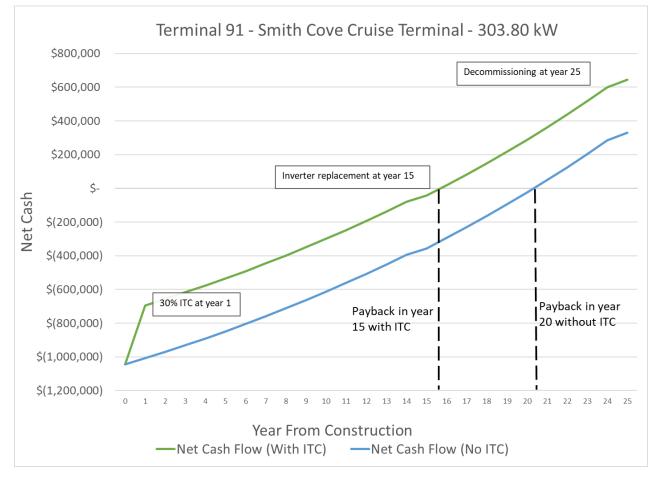


Figure 25: Smith Cove Cruise Terminal Financial Analysis Payback graph, indicating a payback in year 15 with the ITC, and year 20 without the ITC.

4.2 Terminal 91 - C-175 (255.3 kW-DC)

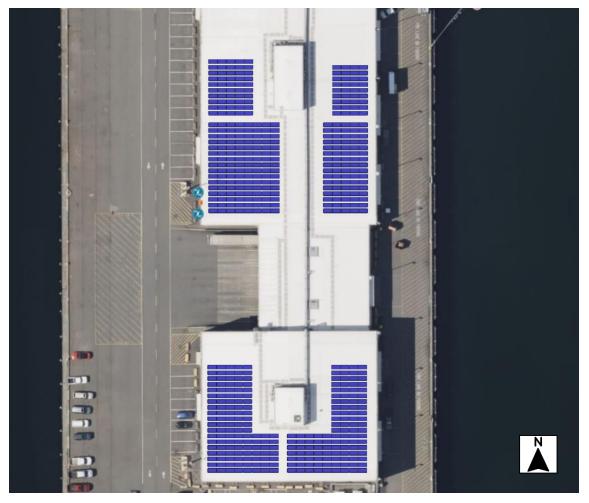


Figure 26: C-175 showing solar modules on roof of building as arranged in the pre-design concept.

System Summary

This system concept consists of a ballasted, grid-tied, rooftop solar array on the C-175 (Lineage) building. The building is an industrial cold-storage facility with ammonia refrigeration system throughout. There are limited offices within the building near the mechanical equipment spaces. The array concept was optimized to allow interconnection within the building's electrical system, or at the nearby substation. This system would also need to consider potential modifications to the lease agreement. It is necessary for the Port to review the lease language for prioritized projects to determine tenant and Owner constructability considerations See Constructability Considerations below.

This project is evaluated as feasible.

Structural Considerations

TKDA has performed a structural assessment of the existing structure of Building C-175 from Terminal 91 in Seattle, WA to determine its ability to support a proposed ballasted rooftop PV array, including modules, racking, and associated equipment. This assessment is based on drawings

provided by the Port of Seattle. The original 1992 drawings are titled "New Chill Building C-175" with DLR Group as Architect of Record (AOR) and Structural Engineer of Record (SEOR). Building C-175 is composed of HSS steel columns and W-shape steel girders with steel roof joists. The roof is a built-up roof composed of TPO membrane, insulation, and steel roof deck. In 2003, insulation was added to the underside of the roof deck. Notes on the additional insulation can be found in the 2003 as-built drawings with LMN as the AOR and Gary J Smoot as the SEOR.

The results of our analysis show that the existing framing is sufficient to carry proposed loading for the planned PV array as detailed in layout plan below. The preliminary racking design estimates an added weight of 4.55psf distributed dead load from the array which is within the 5psf limiting load in the field.

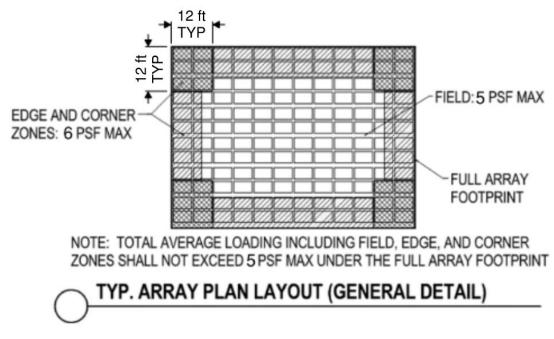


Figure 27: Structural Array Plan from engineering memo.

Limited attachments will be required to prevent array migration during earthquakes since the roof has no parapet. These will be engineered at the time of final design once final system configuration is determined.

Electrical Considerations

Two interconnection strategies were evaluated to provide flexibility and accommodate potential limitations with tenant agreements. The substation was evaluated as one potential interconnection location, but was deprioritized based on feedback from Port engineering. The recommended interconnection point is in the building's electric switchboard.

SÄZÄN _{group}

Final Report Port of Seattle – Maritime Solar Feasibility Study

Figure 28: C-175 Main Distribution Panel (MDP). The three breakers expected to be decommissioned are red tagged in the right panel section at the top.

The building's 1600A-480/277V main distribution panel (MDP) is expected to have spare breaker locations that could be used for solar PV interconnection. The facility manager from Lineage described plans to retire and remove three large compressors in the coming years which will free up two 300A breaker slots and one 400A slot. Any of these might accommodate the proposed system size. Larger systems would require tap interconnections as the 1600A MDP can only accommodate a 200kW-AC solar PV system per NEC 705 "120% rule".

Constructability Considerations

Installation of solar on the building is expected to require evaluation and modification of the tenant agreement with Lineage. The described contract has the tenant responsible for all maintenance within the building, while the Port is responsible for the roof and exterior. Any electrical interconnections in the building's electrical system for a solar PV array would cross that boundary and require legal assessment. The facility manager for Lineage expressed excitement for a rooftop array, and mentioned that Lineage, company-wide, is actively pursuing ways to decarbonize with systems like the one suggested.

Construction will require careful scheduling around building operations as the facility operates yearround. There is space along the east and west sides of the building to crane modules onto the roof for construction. The west side of the building also has existing light poles and bollards that shelter

areas of the wall that might be used to mount inverter equipment. New fencing and bollards might be necessary to meet Port access and protection requirements. The inverter equipment might also be attached to the rooftop penthouses, although this is a lower priority due to the expressed need for easy access by Port staff.

Figure 29: Showing the exterior wall area proposed for inverter mounting. The area is approximately midway up the west side of the building. New bollards to protect the inverters may be required.

The C-175 building has 10 years remaining on the roof warranty and may warrant replacement prior to any solar array installation as arrays continue to perform for at least 25 years. Based on visual evaluation during the site walk, the roof is in good condition with minor discoloration in places but no signs of damage.

If practical with current lease agreement terms between the Port and the tenant, the inverters and other electrical equipment are recommended for installation within the building. Installing new electrical equipment within the building is expected to provide a climate-controlled, secure, environment for the inverters, which reduces the risk of premature failure and extends the life of the equipment.

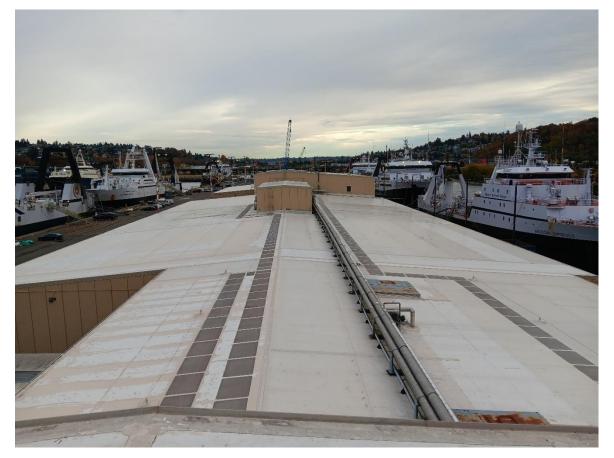


Figure 30: Showing existing roof condition with some minor discoloration, penthouses, and refrigerant lines. Half of the proposed array would be installed immediately south of the small penthouse.

System Summary Table - Terminal 91 C-175

Payback year (With 30% ITC):	15
NPV (2024 USD):	\$38,000
ROM cost of O&M (Year 1):	\$2,600
Estimated total installed cost	\$684,236
Estimated total installed cost (with Port overhead premium applied):	\$855,980
ROM decommissioning estimate (2050 USD):	\$42,200
System Size (kW-DC):	255.3
Estimated cost per Watt (before Port overhead):	\$2.68
Estimated cost per Watt (after Port overhead):	\$3.35
Oct 2024 Utility Rate (\$/kWh):	\$0.1091

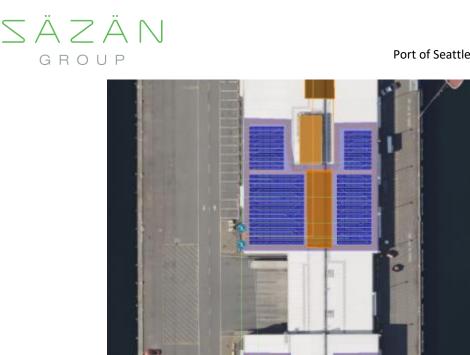


Figure 31: Helioscope Model for Terminal 91 C-175 showing keepouts (orange) and other model details. Keepout areas typically include mechanical equipment, access pathways, skylights, and roof drains.

THE OWNER WATCHING.

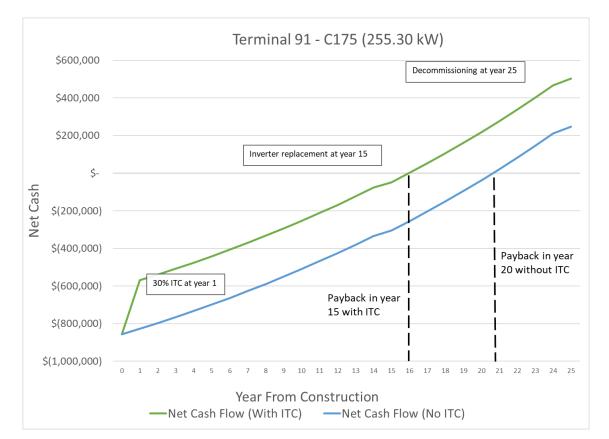
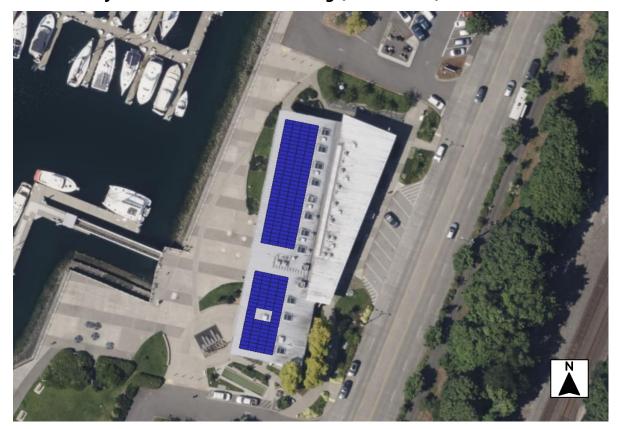



Figure 32: Terminal 91 C175 Building Financial Analysis Payback graph, indicating a payback in year 15 with the ITC, and year 20 without the ITC.

4.3 Shilshole Bay Marina - A-1 Admin Building (99.0 kW-DC)

Figure 33: Shilshole A-1 Building showing solar modules on roof of building as arranged in the pre-design concept.

System Summary

This project concept consists of an attached, flush-mount, grid-tied, rooftop solar array on the west half of the building roof. The roof is standing seam metal which is expected to provide a cost-effective installation and operation. The array occupies all the available roof area on the west half of the building with clearances for existing rooftop equipment (e.g. maintenance access, shade impacts). A larger PV system was considered early in the study, but reduced to allow interconnection within the building's electrical system and avoid costly trenching for a larger system.

This project is evaluated as feasible.

Structural Considerations

TKDA performed a structural assessment of the Shilshole A-1 Building based on as-built structural and architectural drawings provided by the Port. The building is composed of steel columns with a mix of steel and wood roof framing. The results of the structural engineering assessment show that the existing framing is sufficient to carry the expected 3psf of additional load of the proposed solar array. 3psf is a conservative estimate for array weight based on the proposed flush-mount solar arrays installed on a standing seam metal roof.

Figure 34: Showing the west side of the building with key structural members exposed.

This additional load is less than 5% of the design loads (dead, live, and snow) which the 2021 State International Existing Building Code (IEBC) states does not require strengthening or modification of the affected building members¹⁹. If a future solar PV array is expected to exceed 3psf, this analysis will need to be revisited.

During the review of drawings, it was also noted that the design snow load in the drawings exceeds the code prescribed snow load.

Electrical Considerations

The 80kW-AC system is expected to provide the most efficient and lowest risk system with the existing electrical infrastructure. Interconnecting within the building, in the existing panels, will be a lower cost and less impactful pathway than that required for a larger array. If a larger array is desired in the future, intercepting the building's feeders from the substation to the north may be required.

¹⁹ Washington State 2021 IEBC for new structures.

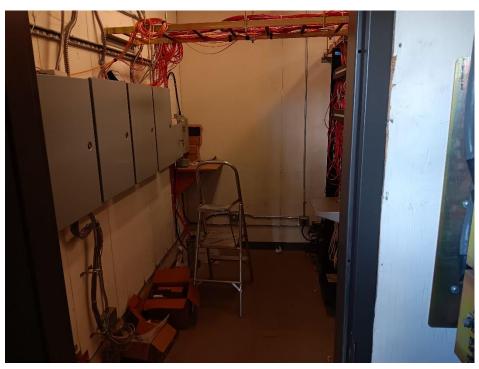
Final Report

Port of Seattle – Maritime Solar Feasibility Study

Figure 35: Panel 4MB proposed for interconnection using relocated spares

Panel 4MB is expected to have sufficient capacity for the 100A -480/277V breaker needed. During the site walk, three single-phase breaker slots were seen in this panel. Although these are not co-located, other loads may be moved to build a 3-phase breaker slot for the array.

Constructability Considerations


SÄZÄN

GROUP

Standing seam metal roofing is excellent for solar PV installations. The seams allow for the use of seam clamps to attach the array which reduces or eliminates the need to penetrate the roof. A future contractor may opt to pass conduit through the roof, but paths around the roof edge or into the wall joining roof planes may be preferable.

Shilshole Bay A-1 Building roof workmanship warranty expired December 22, 2021, and the 30-year product warranty may be void as the building site is "less than one-half mile radius from a seacoast, saltwater, or other brackish water environment". It is recommend to confirm warranty terms with the roof manufacturer and installer.

Figure 36: Proposed location for new solar PV equipment within the IDF room. This is expected to provide a secure and codecompliant location for installation while remaining near the electrical room.

The inverters and other electrical equipment are recommended to be installed inside the building. Installing new electrical equipment within the building is expected to provide a climate-controlled, secure, environment for the inverters which reduces the risk of premature failure and extends the life of the equipment.

Payback year (With 30% ITC):	15
NPV (2024 USD):	\$16,500
ROM cost of O&M (Year 1):	\$1,000
Estimated total installed cost	\$231,900
Estimated total installed cost	\$290,106
(with Port overhead premium applied):	
ROM decommissioning estimate (2050 USD):	\$14,400
System Size (kW-DC):	99.0
Estimated cost per Watt (before Port overhead):	\$2.34
Estimated cost per Watt (after Port overhead):	\$2.93
Oct 2024 Utility Rate (\$/kWh):	\$0.1091

System Summary Table - Shilshole Bay Marina A-1 Admin Building

Final Report
Port of Seattle – Maritime Solar Feasibility Study



Figure 37: Final Helioscope Model for Shilshole Bay Marina A-1 Admin Building showing keepouts (orange) and other model details. Keepout areas typically include mechanical equipment, access pathways, skylights, and roof drains.

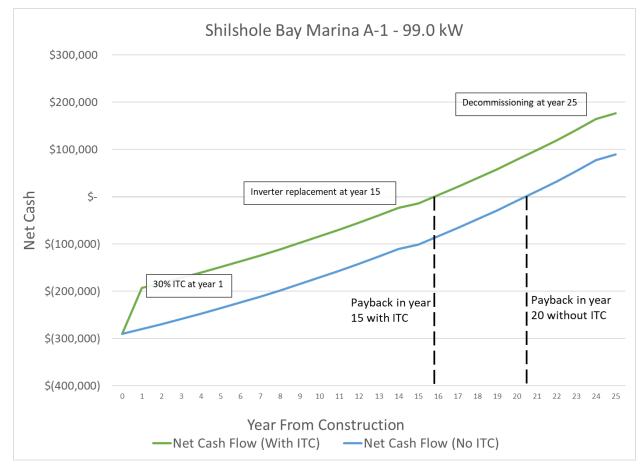


Figure 38: Shilshole Bay Marina A-1 Admin Building Financial Analysis Payback graph, indicating a payback in year 15 with the ITC, and year 20 without the ITC.

V. Incentives and Financing Considerations

5.1 IRS Investment Tax Credit

Strategic use of incentives can help reduce capital expenditures across Port of Seattle facilities. The primary incentive for the development of solar projects at this scale is the Federal Investment Tax Credit (ITC) direct payment²⁰ under the Inflation Reduction Act of 2022. If the program qualifications are met, this program provides a cash reimbursement or base-credit of up to 30% of eligible project costs, with opportunities for bonus credits. Reimbursements are made the year after the system is placed in service. Further evaluation is needed to determine if the Port is eligible for this program, such as coordination with a tax attorney or Port legal representatives.

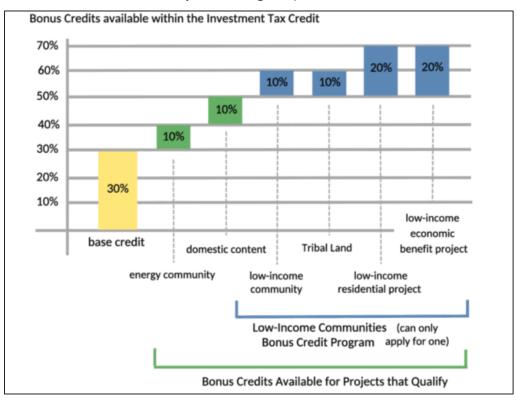


Figure 39: ITC Direct Payment Available from the Inflation Reduction Act. This program offers a base credit for 30% of Solar Project Costs for eligible entities. Further, the 10% domestic content bonus may be available to the Port of Seattle depending on installing qualifying equipment and eligibility.

While grants, rebates, and incentives like the ITC are subject to availability, eligibility, and adherence to filing timeline, other public agencies have been successful in applying the ITC for solar projects to receive a direct payment. UndauntedK12²¹ is a non-profit organization that has supported public agencies throughout the direct payment process, including guidance on eligibility, process, and case study examples of successful reimbursement.

²⁰ <u>https://www.whitehouse.gov/cleanenergy/directpay/</u>

²¹ <u>https://www.undauntedk12.org/how-schools-get-reimbursed</u>

5.2 Net metering and Distributed Generation

Additional considerations include net metering benefits provided under Washington State law RCW 80.60. This law allows renewable energy systems with a capacity of up to 100 kW-AC to participate in net metering, enabling excess energy produced by the system to be sent to the grid; the utility company then credits the customer at the retail utility rate for this energy. Due to high energy use at the campus level, which likely exceeds solar production throughout the year, surplus solar generation at the prioritized sites is expected to be distributed behind the campus meter, with no export to the utility grid. As a result, all solar production is anticipated to be used by Port facilities, although detailed energy use data, such as interval data, can inform coincident production and potential solar energy export quantity. Detailed energy use, such as interval data, is required to confirm and model power export potential.

There is some uncertainty around Net Metering and future utility programs regarding how they will value electricity produced from distributed generation like solar PV. The prioritized systems are all behind a campus meter with large loads. Because of this, the Port is expected to be insulated from energy export uncertainty as any energy generated and used within the campus loops will offset retail energy costs on a 1-for-1 basis. This is a key advantage to behind-the-meter solar generation. Systems can be designed to minimize electricity export through right-sizing solar PV to not exceed the minimum coincident demand or incorporating energy storage.

5.3 Grant Resources

Grant funding resources are a valuable consideration to reduce capital costs for PV systems. Washington State Department of Commerce Clean Energy Fund (CEF)²² and the Energy Program in Communities (EPIC)²³ are both highly successful funding programs that offer a wide breadth of funding options. Specifically, the following programs have been identified as potential project funding sources for the Port of Seattle.

- CEF Grid Modernization Program
- EPIC Community Decarbonization Grant
- EPIC General Clean Energy Grant
- WA DOC Energy Efficiency and Retrofit Grant²⁴

Based on historical trends, the Washington State Department of Commerce is expected to release funding opportunity announcements for many of these programs in spring 2025. Previous grant ceilings for these programs have ranged from \$400,000 to \$3 million. The projects identified in the shortlist are expected to fall within this funding range.

Two essential tools for identifying and targeting funding opportunities are the DSIRE²⁵ website and the recently launched FundHubWA²⁶ portal. Both platforms enable users to search for state and

²² <u>https://www.commerce.wa.gov/epic/legacy-programs/cef/</u>

²³ https://www.commerce.wa.gov/epic/

²⁴ <u>https://www.commerce.wa.gov/energy-incentives/energy-efficiency-grant-program/</u>

²⁵ https://programs.dsireusa.org/system/program/wa

²⁶ <u>https://fundhub.wa.gov/funding-opportunities/</u>

federal climate and clean energy grants and incentives, making them critical resources for securing future funding.

Credit: FundHubWA Portal

5.4 Operations and Maintenance (O&M) Reserves

One fiscal strategy is to hold energy savings from reduced grid purchases to fund O&M reserves. This strategy, in effect, redirects money that would have otherwise been spent on utility-provided energy towards the cost of operating and maintaining the system. Additionally, this strategy can be used to finance the decommissioning costs. O&M costs were included in financial analysis calculations for this study, so this strategy is not expected to negatively impact actual payback for the prioritized systems.

This strategy does not apply when the tenant pays bills directly to the utility. However, if the tenant pays utility expenses to the Port, a production meter should be installed to allow the Port to bill tenants for energy usage and recover its investment in the PV system through the savings from onsite generation.

VI. Conclusion

This feasibility study has successfully vetted 50 properties, defined the top 10 sites that are feasible and identified three constructable, cost-effective, solar PV array concepts that meet all the Port's selection and prioritization criteria. These projects align with the Port's Century Agenda Goal 4 and advance the MCAAP goals in the building and campus energy chapter, in addition to other local and regional sustainability goals. The following tasks are recommended to pursue design development of the prioritized sites:

- Roof replacement for the Smith Cove solar PV project.
- Plan and specifications review by Port Engineering Services of each project. Review should also identify additional building and/or site infrastructure upgrades needed for project feasibility as well as identifying how the power generation of each project would impact current electrical demand.
- Identify capital project process: have Port Engineering Services and/or Waterfront Project Management provide cost estimates for the plans revised by Port Engineering Services.
- Identify alternative funding source(s) (e.g., grant funding, private/public partnerships).
- Assemble a project team, such as a 'Port of Seattle Clean Energy Taskforce'.
- Obtain approval of each project by a project sponsor including any associated equipment (including battery storage), building and/or site improvements.

Säzän Group is excited to have been invited to support this Service Directive for the Port's sustainability initiatives and is happy to provide clarification or elaboration on any of our findings in this report. Säzän Group and TKDA Structural Engineers commend the Port on this initiative to evaluate and proactively consider opportunities for solar project development.

Appendices

Appendix	Title	Page
Appendix A	Screening Tool and Traffic Light Assessment	48
Appendix B	Port of Seattle Maritime Solar Feasibility Study Decision Matrix	62
Appendix C	 Smith Cove Cruise Terminal Project Documents Helioscope Solar PV Production and Shading Model Reports LIDAR imagery Structural Memos from TKDA Engineers Pre-Design drawing package Preliminary Racking Report Equipment Data Sheets Detailed Cost Estimate 	71
Appendix D	 Shilshole A-1 Project Documents Helioscope Solar PV Production and Shading Model Reports LIDAR imagery Structural Memos from TKDA Engineers Pre-Design drawing package Preliminary Racking Report Equipment Data Sheets Detailed Cost Estimate 	134
Appendix E	 C-175 Project Documents Helioscope Solar PV Production and Shading Model Reports LIDAR imagery Structural Memos from TKDA Engineers Pre-Design drawing package Preliminary Racking Report Equipment Data Sheets Detailed Cost Estimate 	180
Appendix F	Financial Formulas	239
Appendix G	Port of Seattle Provided Documentation	243
Appendix H	Project Team and Key Resumes	246

Appendix A Site Screening Tool

Data Table Columns	Data Source	Applicability	Definition
Property Name	Port	All Sites	Semilion
Property Address	Port	All Sites	
Port Campus	Port	All Sites	
Google Plus Code	Satellite Survey	All Sites	Google maps coordinate code. used for quickly locating the building site on Google Maps for buildings with limited public mapping.
Shortlist Y/N	Port	All Sites	
Stoplight Assessment	Satellite Survey	All Sites	Holistic qualitative scoring from 1-3 with 3 being best. Based on preliminary modeling and remote site survey only.
Site Owner	Port	All Sites	
Site Operator	Port	All Sites	
Building Square Footage	Port	All Sites	
Baseline Annual kWh Consumption	Port	All Sites	Electricity consumption per year. This can be used to determine fractional energy savings with solar.
			Building construction and function description. This is useful for screening sites. (e.g. wooden pole barns are typically infeasible for solar
Building Information - Satellite (Need to Confirm on site)	Satellite Survey	All Sites All Sites	structurally)
Building Type		All Sites	Building type/function information
Roof Square Footage	Port	All Sites	Apparent roof type from satellite imagery. Typical types are TPO, modified bitumen, corrugated and standing seam metal, and some others.
Roof Type -Satellite	Satellite Survey	All Sites	Satellite roof type is only a visual estimate and will be confirmed for shortlisted sites.
			Qualitative estimate of roof condition; 1 is very bad - 10 is excellent. Soiling, discoloration, water pooling, etc. are used for this qualitative
			evaluation. Solar arrays can last multiple decades, and roof replacement after an array is installed is much more expensive, so roof age and
Roof Condition (1-10) - Satellite	Satellite Survey	All Sites	condition are important considerations for screening.
			Qualitative estimate of roof complexity focused on shape: 10 is most complex. Mostly flat, square roofs of uniform height would be ranked 1.
			Roofs with multiple levels, various slopes, curved surfaces, small sections, or angled shapes are ranked with higher scores. This does not consider
Roof Shape Complexity - Satellite (1-10)	Satellite Survey	All Sites	parapets, penetrations, mechanical equipment, etc.
			Qualitative estimate of roof complexity focused on obstructions: 10 is most complex. no obstructions, parapets, or shading would be ranked 1.
			Roofs with many penetrations, skylights, or HVAC units would be ranked higher. Another aspect considered is the distribution of obstructions; a
			roof with many HVAC units on it all clustered together would be ranked lower than a roof with many scattered obstructions since the clustered
Roof Obstruction Complexity (1-10) - Satellite	Satellite Survey	All Sites	layout may still allow a large array section that is efficient and easy to install.
De . (A			Single factor combining roof selection considerations for easy qualitative ranking (Roof Obstruction Complexity) + (Roof Shape Complexity) + (10-
Roof Aggregate Score (0-30) Roof Area Useable % Estimate- Satellite	Satellite Survey	All Sites	Roof Condition) Qualitative estimate based on shape and obstructions. Visually estimated only.
Roof Area Oseable % Estimate- Satellite	Satellite Survey	All Sites	Are there adjacent buildings or locations that might be impacted by glare from a solar array? Visually estimated from satellite imagery and street
Glare evaluation recommended? Y/N	Satellite Survey	All Sites	view photos.
	Satemic Survey	All Sites	Can the rooftop and a future array be seen from areas away from the building? Visually estimated from satellite imagery and street view photos.
Array visibility estimated Y/N	Satellite Survey	All Sites	This might include adjacent buildings, drivers on raised highways or roads, or from the street.
Roof Slope (Degrees)		All Sites	Roof Slope, 0 degrees being flat, all positive values.
			Roof azimuth, 0 degrees being North, Positive values only clockwise from North. 180 being South. 270 west. Determined from LIDAR data in
Roof Azimuth (Degrees)	Heliscope Modeling	All Sites	Helioscope.
Rooftop Height (ft)	Heliscope Modeling	All Sites	Roof Height in feet, determined from LIDAR. In relation to surrounding ground.
PV Application	Heliscope Modeling	All Sites	PV array information. E.g. Rooftop (Flat), Rooftop (Pitched), Fixed tilt
			Percentage of the annual performance impacted by shading. This is modeled per module and can come from trees, structures, other parts of the
Shading%	Heliscope Modeling	All Sites	array, and the horizon.
			Size of the array in kilowatts based on the preliminary modeling. DC nameplate reflects the number of solar modules times the nameplate of
Module DC Nameplate (kW-DC)	Heliscope Modeling	All Sites	those modules.
Module AC Nameplate (kW-AC)			Size of the system inverters in kilowatts based on the preliminary modeling. AC nameplate comes from the conversion equipment size (inverters) and is typically slightly lower than the DC nameplate for a more cost effective and efficient system.
kWh/kWp	Heliscope Modeling Heliscope Modeling	All Sites All Sites	unit performance of the preliminary modeling, kWh produced per year, per kW-DC nameplate
Estimated Production (kWH)	Heliscope Modeling	All Sites	Production estimate from preliminary Helioscope Model. Accounts for shading, and other factors.
Meter Type	Port	All Sites	Type of meter: Campus, or building-level
Total Electricity Use (2023 kWh)	Port	All Sites	Total building or campus electricity use for a year. Used to calculate the % offset of the site's solar array
Percent Offset of Campus Electricity (%)	Calculation	All Sites	(estimated production) / (total electricity use) * 100%
			Percentage value related to the system productivity as compared to an ideal design for the site. Higher values indicate higher performance
Total Solar Resource Fraction (TSRF)	Heliscope Modeling	All Sites	potential
>5kW Y/N	Calculation	All Sites	Is the DC nameplate > 5kW-DC?
			Estimated unit ROM cost of the solar array. This is based on our experience on other installations and typical local costs. This is only based on the
			solar array preliminary concept and reflects our ROM estimate of potential bids from a commercial solar installer for the project. Does not include
Estimated Cost per Watt	Estimate	All Sites	Port PM fees, bidding costs, RFP development, training, etc.
ROM Cost	Calculation	All Sites	(Cost per Watt) X (Module DC Nameplate)
SCL Rate Code	Port	All Sites	Utility rate code
SCL Rate Code Definition	Port	All Sites	Utility rate code
6 (1) M/L (D	All Char	
\$/kWh (as of Oct 2024)	Port	All Sites	Unit cost of electricity by kWh from the utility provider for the specific site. This may be more than one number if billing is tiered. (Unit cost of electricity) X (estimated production in kWh)
Year 1 Energy Savings Simple Payback (Years)		Shortlist Shortlist	(Unit cost of electricity) X (estimated production in KWh) (ROM Cost) / (Energy Savings). More detailed financial analysis provided for final site list.
Simple Layback (Teals)	Calculation	SHUTHISL	Power capacity of the utility infrastructure serving the site or section of the campus. If the utility substation rating is known and is more limiting
Utility Hosting Capacity (kVA)	Port	Shortlist	than the conductors, that number is used and annotated in the notes
Port Substation Capacity (kVA)		Shortlist	Power capacity of the port infrastructure serving the site or section of the campus
		551 (113)	note expery of the port mindaducere serving the site of section of the computer
Hosting Capacity Constraint Y/N	Port	All Sites	Is the hosting capacity limiting the size of the solar array at the site? E.g. is the rooftop sufficient for 100kW-Ac but the utility can only allow 15kW
Substation Feeding	Port	All Sites	Number or identifier for the Port's feeder/substation
Utility Feeder	Port	All Sites	Number or identifier for the Utility's feeder/substation
Downtown Spot Network Y/N?	Port	All Sites	Utility provided, is the site within the downtown spot network? This provides additional restrictions on solar installations
		-	·

Port of Seattle Solar Screening Tool								
Property Name	Property Address	Port Campus	Google Plus Code	Top 10 Y/N	Stoplight Assessment (Updated)	Site Owner -	Site Operator	Roof Square Footage
Shilshole Bay Marina – A-1 Admin Building	7001 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHJW+74 Seattle, Washington	Y		3 Port of Seattle	Port of Seattle	12,160
								12,100
Terminal 91 – C-175 Commercial	2001 W Garfield St #C175, Seattle, WA 98119	Terminal 91	JJG9+QXC Seattle, Washington	Y		3 Port of Seattle	Port of Seattle	88,000
Terminal 91 – Smith Cove Cruise Terminal	2001 W Garfield St #C100, Seattle, WA 98119	Terminal 91	JJG8+XR Seattle, Washington	Y		3 Port of Seattle	Port of Seattle	90,600
Fishermen's Terminal – I-3 Shipyard	1510 W Thurman St, Seattle, WA 98119	Fishermen's Terminal	MJ4F+55 Seattle, Washington	N		3 Port of Seattle	Tenant	12,370
Pier 66 – Anthony's Restaurant	2201 Alaskan Way, Seattle, WA 98121	Pier 66	JM62+8P Seattle, Washington	N		3 Port of Seattle	Port of Seattle	12,340
Pier 66 – World Trade Center West	2200 Alaskan Way, Seattle, WA 98121	Pier 66	JM62+FW Seattle, Washington	Ν		3 Port of Seattle	Property Manager	20,600
Pier 66 – Bell Harbor International ConferenceC	• • • • • • • • • • • • • • • • • • • •	Pier 66	JM62+F6 Seattle, Washington	Y		2 Port of Seattle	Port of Seattle	72,936
Pier 66 – Bell Harbor Marina Office	2203 Alaskan Way, Seattle, WA 98121	Pier 66	JM62+6J Seattle, Washington	Y		2 Port of Seattle	Port of Seattle	1,612
Terminal 91 – A-1 Warehouse	2001 W Garfield St, Seattle, WA 98119	Terminal 91	JJJ8+8R Seattle, Washington	Y	0	2 Port of Seattle	Port of Seattle	51,070
Terminal 91 – C-173 Commercial	2001 W Garfield St #C173, Seattle, WA 98119	Terminal 91	JJHC+V25 Seattle, Washington	Y		2 Port of Seattle	Port of Seattle	50,000
Terminal 91 - Smith Cove Covered Walkways	2001 W Garfield St #C100, Seattle, WA 98119	Terminal 91	JJH8+MRW Seattle, Washington	Υ		2 Port of Seattle	Port of Seattle	Unknown
Fishermen's Terminal – C-2 Nordby	1711 W Nickerson St, Seattle, WA 98119	Fishermen's Terminal	MJ4C+273 Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	21,000
Fishermen's Terminal – N-3 Netshed Storage	1715 W Thurman St, Seattle, WA 98119	Fishermen's Terminal	MJ4C+4P Seattle, Washington	N		2 Port of Seattle	Port of Seattle	12,000
Fishermen's Terminal – N-4 Netshed Storage	1735 W Thurman St, Seattle, WA 98119	Fishermen's Terminal	MJ4C+5F Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	12,000
Fishermen's Terminal – N-6 Netshed Storage	602 Silky's Alley, Seattle, WA 98119	Fishermen's Terminal	MJ3C+V8 Seattle, Washington	N		2 Port of Seattle	Port of Seattle	11,400
Fishermen's Terminal – N-7 Netshed Storage	702 Silky's Alley, Seattle, WA 98119	Fishermen's Terminal	MJ3C+R5R Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	11,400
Fishermen's Terminal – N-8 Netshed Storage	812 18th Ave W, Seattle, WA 98119	Fishermen's Terminal	MJ3C+R2 Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	11,400
Maritime Industrial Center – A-1Warehouse/Sho	4600 27th Ave W, Seattle, WA 98199	Maritime Industrial Center	MJ75+66 Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	18,400
Maritime Industrial Center – A-2Warehouse/Sho	2700 W Commodore Way, Seattle, WA 98199	Maritime Industrial Center	MJ74+6W4 Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	4,590
Maritime Industrial Center – A-5Warehouse/Sho	2620 W Commodore Way, Seattle, WA 98199	Maritime Industrial Center	MJ75+5M6 Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	1,296
Shilshole Bay Marina – A-5 Office Building	6701 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHGR+PRP Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	2,400
Shilshole Bay Marina – M-5 Restroom/ShowerFa	a 7001 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHMW+6JV Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	480
Shilshole Bay Marina – M-6 Restroom/ShowerFa	a 7671 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHMW+QJ Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	480
Terminal 102 – Building A	1001 SW Klickitat Way, Seattle, WA 98134	Terminal 102	HM92+WP5 Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	31,250
Terminal 102 – Building B	1001 SW Klickitat Way, Seattle, WA 98134	Terminal 102	HMC2+46P Seattle, Washington	N		2 Port of Seattle	Port of Seattle	29,687
Terminal 91 – M-86 Office	2001 W Garfield St #Bldg 86, Seattle, WA 98119	Terminal 91	JJM9+4V Seattle, Washington	Ν		2 Port of Seattle	Port of Seattle	2,286
Fishermen's Terminal – C-3 West Wall	4005 20th Ave W, Seattle, WA 98199	Fishermen's Terminal	MJ48+GW Seattle, Washington	Y		1 Port of Seattle	Port of Seattle	8,000
Fishermen's Terminal – N-9 Netshed Storage	909 16th Ave W, Seattle, WA 98119	Fishermen's Terminal	MJ3C+VJ Seattle, Washington	Y		1 Port of Seattle	Port of Seattle	9,360
Terminal 91 – C-155 Warehouse		Terminal 91	JJQ8+VW Seattle, Washington	Y		1 Port of Seattle	Port of Seattle	29,469
Fishermen's Terminal – C-10 Office	3918 15th Place W, Seattle, WA 98119	Fishermen's Terminal	MJ4F+62 Seattle, Washington	N		1 Port of Seattle	Port of Seattle	8,000
Fishermen's Terminal – I-2 Fire Department	1735 W Thurman St, Seattle, WA 98199	Fishermen's Terminal	MJ5C+7R7 Seattle, Washington	Ν		1 Port of Seattle	Port of Seattle	784
Fishermen's Terminal – I-8 Industrial	1561 W Nickerson St, Seattle, WA 98119	Fishermen's Terminal	MJ3F+X2 Seattle, Washington	Ν		1 Port of Seattle	Port of Seattle	9,500

Port of Seattle Solar Screening Tool		Port Provided or Assisted Data in Blue			1 is low, 10 is high		1 is low, 10 is high			
Property Name	Building Information	Building Type	Roof Type -From Site	Roof Age - Port	Roof Condition (1- 10) - Satellite	Roof Shape Complexity - Satellite (1-10)	Roof Obstruction Complexity (1 10) - Satellite		Roof Area Useable % Estimate- Satellite	Glare evaluation recommended ? Y/N
Shilshole Bay Marina – A-1 Admin Building	Steel/Wood Framed, Mixed Us	Office/Retail	Standing Seam	Unknown	10	5	5 4	1 9	50%	N
Terminal 91 – C-175 Commercial	Steel Framed Warehouse	Refrigerated Warehouse/Offic	Membrane - TPO	ç	9	5	5	5 11	50%	N
Terminal 91 – Smith Cove Cruise Terminal	Steel Framed	Transportation Terminal, stora	EPDM	15	5 5	1	L	/ 13	50%	Y
Fishermen's Terminal – I-3 Shipyard	Tilt up Concrete	Shipyard	Torch Down - Mod-Bitumen	Unknown	7	1	L Z	2 6	70%	N
Pier 66 – Anthony's Restaurant	Steel Framed Restaurant	Restaurant	Standing Seam	Unknown	8	2	2	L 5	90%	N
Pier 66 – World Trade Center West	Concrete and Steel Office Build	Office	Built Up Roof	Unknown	9	1	L	5	80%	N
Pier 66 – Bell Harbor International ConferenceCe	Steel Framed Building	Transportation Terminal/Conv	Standing Seam, Membrane	Unknown	10		4 2	2 6	90%	N
Pier 66 – Bell Harbor Marina Office	Steel Framed Office	Office	Standing Seam	Unknown	10	3	3	6	60%	Y
Terminal 91 – A-1 Warehouse	Steel Framed Warehouse	Dry Warehouse	Standing Seam	Unknown	7	e	5	/ 16	40%	N
Terminal 91 – C-173 Commercial	Steel Framed Warehouse	Dry Warehouse	Membrane - TPO	Unknown	9	2	2	L 4	100%	N
Terminal 91 - Smith Cove Covered Walkways	Steel framed awning	Steel framed awning	Corrugated Metal	Unknown	9	1	L :	L 3	90%	Y
Fishermen's Terminal – C-2 Nordby	CMU - Commercial	Office	Torch Down - Mod-Bitumen	Unknown	8	1	٤	3 11	25%	N
Fishermen's Terminal – N-3 Netshed Storage	Steel Framed Net Shed	Net Shed	Torch Down - Mod-Bitumen	Unknown	7	2	2	8 8	60%	N
Fishermen's Terminal – N-4 Netshed Storage	Steel Framed Net Shed	Net Shed	Torch Down - Mod-Bitumen	Unknown	7	2	2	8	60%	N
Fishermen's Terminal – N-6 Netshed Storage	Steel Framed Net Shed	Net Shed	Torch Down - Mod-Bitumen	Unknown	7	1	L .	5 9	50%	N
Fishermen's Terminal – N-7 Netshed Storage	Steel Framed Net Shed	Net Shed	Torch Down - TPO	Unknown	5	1	L	5 11	. 50%	N
Fishermen's Terminal – N-8 Netshed Storage	Steel Framed Net Shed	Net Shed	Torch Down - TPO	Unknown	5	1	L	5 11	50%	N
Maritime Industrial Center – A-1Warehouse/Shc	CIP Concrete Structure	Warehouse/Shop	Torch Down - TPO	Unknown	5	1	L	10	50%	N
Maritime Industrial Center – A-2Warehouse/Shc	Wood Framed Industrial	Warehouse/Shop	Three-Tab - Torch Down Mod B	Unknown	7	5	5	9	100%	N
Maritime Industrial Center – A-5Warehouse/Shc	Steel Framed Warehouse	Warehouse/Shop	Corrugated Metal	Unknown	6	2	2	2 8	80%	N
Shilshole Bay Marina – A-5 Office Building	CMU Wall - Light Industrial	Office	Mod-Bitumen	Unknown	7	1	L Z	2 6	70%	N
Shilshole Bay Marina – M-5 Restroom/ShowerFa	CMU Wall - Restroom	Restrooms	Membrane	Unknown	9	1	L E	3 5	70%	N
Shilshole Bay Marina – M-6 Restroom/ShowerFa	Steel Frame Bathroom	Restrooms	Standing Seam Metal	Unknown	10	1	L :	L 2	90%	N
Terminal 102 – Building A	Typical Office Building	Office	Membrane	Unknown	5	2	2	14	30%	N
Terminal 102 – Building B	Typical Office Building	Office	Membrane	Unknown	5	2	2 8	3 15	20%	N
Terminal 91 – M-86 Office	Offices	Office	Corrugated Metal	Unknown	8	2	2	5	100%	N
Fishermen's Terminal – C-3 West Wall	Wood Framed Offices	Office	Torch Down - Mod-Bitumen	Unknown	5	1	L	2 8	80%	N
Fishermen's Terminal – N-9 Netshed Storage	Steel Framed Net Shed	Net Shed	Membrane - TPO	Unknown	9	1		3	100%	N
Terminal 91 – C-155 Warehouse		Warehouse	Corrugated Metal	Unknown	3	1		1 9	100%	
Fishermen's Terminal – C-10 Office	Wood Framed - Offices	Industrial/Office	· · · · · · · · · · · · · · · · · · ·	Unknown	7	1	5	5 9	50%	
Fishermen's Terminal – I-2 Fire Department	Wood Framed - Shed	Fire Station	Corrugated Metal	Unknown	2	. 2	2	11	90%	
Fishermen's Terminal – I-8 Industrial	Steel Frame Light Industrial	Industrial	Tar	Unknown	3	2	2 3	3 12	80%	N

Port of Seattle Solar Screening Tool												
			Roof Slope	Roof Azimuth		Module DC Nameplate (kW-	Module AC - Nameplate (kW·	Estim V- Produ				
Property Name	Array visibility estimated Y/N	Height (ft)	(Degrees)	(Degrees)	PV Application/Technology	DC)	AC)	kWh/kWp	Shading%	(kWH)	Meter Type	
Shilshole Bay Marina – A-1 Admin Building	Y, some visibility from parking a	18	3 (282	Flush Mount, seam clamps	100	80	989	2.40%	97,860	Campus Master	
Terminal 91 – C-175 Commercial	Y, fishing vessels, Cruise ships f	17-35		90	Ballasted, flat roof	255	200	1,101	2.30%	281,100	Campus Master	
Terminal 91 – Smith Cove Cruise Terminal	Y, cruise passengers on Cruise s	35	5 0	180	Ballasted, flat roof	304	240	1,101	2.80%	334,500	Campus Master	
Fishermen's Terminal – I-3 Shipyard	Y, Highway	22.5	5 (180	Fixed Tilt, Flat Roof	74	67	1,181	1.00%	87,690	Campus Master	
Pier 66 – Anthony's Restaurant	Y, Water traffic	35	5 8.5	5 180	Flush Mount, Pitched Roof	46	33	1,118	0.00%	51,510	Building Meter	
Pier 66 – World Trade Center West	N	50) (221	Fixed Tilt, Flat Roof	87	66	1,154	2.10%	100,100	Building Meter	
Pier 66 – Bell Harbor International ConferenceC	Y, public, cruise passengers	37			Flush Mount, seam clamps	34	29	1,029	1.60%	35,290	Building Meters	
Pier 66 – Bell Harbor Marina Office	Y, cruise passengers	12	2 17	7 90	Flush Mount, seam clamps	12	11	1,038	1.30%	12,200	Building Meter	
Terminal 91 – A-1 Warehouse	Y, cruise passengers	29-42	Various	270	Flush Mount, seam clamps	241	200	1,039	1.50%	250,500	Campus Master	
Terminal 91 – C-173 Commercial	Y, fishing vessels only	25	5 4.6	5 90	Flush mount, or ballasted depending	470	367	1,049	0.00%	493,700	Campus Master	
Terminal 91 - Smith Cove Covered Walkways	Y, public, cruise passengers	11			Flush Mount, attached	183	133	1,048	0.30%	192,000	Campus Master	
Fishermen's Terminal – C-2 Nordby	N	13.5	5 (180	Flush Mount, Flat Roof	60	58	1,175	1.20%	70,270	Campus Master	
Fishermen's Terminal – N-3 Netshed Storage	Y, Highway	27	7 3.7	7 90	Fixed Tilt, Flat Roof	76	67	1,146	2.90%	87,110	Campus Master	
Fishermen's Terminal – N-4 Netshed Storage	Y, Highway	28	3 3.7	7 90	Fixed Tilt, Flat Roof	54	43	1,176	1.10%	67,410	Campus Master	
Fishermen's Terminal – N-6 Netshed Storage	N	24	1 3.2	2 90	Fixed Tilt, Flat Roof	63	67	1,193	1.10%	74,870	Campus Master	
Fishermen's Terminal – N-7 Netshed Storage	Ν	26	5 2.3	3 90	Fixed Tilt, Flat Roof	86	72	1,175	1.10%	100,700	Campus Master	
Fishermen's Terminal – N-8 Netshed Storage	N	26	5 3.5	5 90	Fixed Tilt, Flat Roof	86	72	1,174	1.20%	100,700	Campus Master	
Maritime Industrial Center – A-1Warehouse/Sho	N	29) (180	Fixed Tilt, Flat Roof	120	100	1,186	1.50%	141,800	Campus Master	
Maritime Industrial Center – A-2Warehouse/Sho	Y, Road traffic	10-23	Various	90	Fixed and Flush Mount	30	29	993	6.20%	30,190	Campus Master	
Maritime Industrial Center – A-5Warehouse/Sho	Y, Road traffic	21	L 19	9 180	Flush Mount, Pitched Roof	14	14	1,026	0.00%	14,080	Campus Master	
Shilshole Bay Marina – A-5 Office Building	Ν	12	2 (180	Fixed Tilt, Flat Roof	13	10	1,156	0.80%	14,740	Campus Master	
Shilshole Bay Marina – M-5 Restroom/ShowerFa	a N	10) (180	Flush Mount, Flat Roof	11	10	1,007	0.00%	10,850	Campus Master	
Shilshole Bay Marina – M-6 Restroom/ShowerFa	Y, Marina traffic	12	2 6.6	5 184	Flush Mount, Pitched Roof	9	7	1,051	0.00%	9,276	Campus Master	
Terminal 102 – Building A	Y, Highway	26			Fixed Tilt, Flat Roof	92	67	1,140	1.40%		Building Meters	
Terminal 102 – Building B	Y, Highway	26			Fixed Tilt, Flat Roof	89	67	1,109	3.50%		Building Meters	
Terminal 91 – M-86 Office	Y, Road traffic	20		1 90	Flush Mount, Pitched Roof	16	15	1,033	0.90%		Campus Master	
Fishermen's Terminal – C-3 West Wall	N	22			Ballasted or Attached, none recomm		23	1,138	1.60%	32,350	Campus Master	
Fishermen's Terminal – N-9 Netshed Storage	Y, Highway	26.5	5 4.7	7 90	Ballasted, flat roof	92	67	1,193	1.10%	105,800	Campus Master	
Terminal 91 – C-155 Warehouse	N	19.7	7 4.8	3 90	Flush Mount, Attached	382	300	1,054	0.00%	402,900	Campus Master	
Fishermen's Terminal – C-10 Office	Ν	17-21	(180	Fixed Tilt, Flat Roof	14	14	1,023	0.70%	14,040	Campus Master	
Fishermen's Terminal – I-2 Fire Department	Y, Boaters	12.5	5 (Flush Mount, Flat Roof	6	6	1,057	0.00%	6,218	Campus Master	
Fishermen's Terminal – I-8 Industrial	Y, Highway	10-14	(180	Fixed Tilt, Flat Roof	56	58	1,172	1.60%	68,350	Campus Master	

Port of Seattle Solar Screening Tool								Port Provided or	r Assisted Data in Blue		
			T								
			Total Solar								
	The second s	Percent Offset of				ROM Installed Cost	ROM Cost with				
		-	Fraction		Watt (before	(No Overhead	25.1% Port		SCL Rate Code	\$/kWh (as of Oct	
Property Name	Use (2023 kWh)	Electricity (%)	(TSRF)	>5kW Y/N	overhead markup)	Applied)	Overhead Applied	SCL Rate Code	Definition	2024)	Savings
Shilshole Bay Marina – A-1 Admin Building	6,493,434	1.507%	84.5%	Y	\$ 2.70	\$ 269,730	\$ 337,432	ELGC	Large General Service	, \$ 0.10910	\$ 10,676.53
T	44 967 799	2.4729/			<u> </u>						
Terminal 91 – C-175 Commercial	11,367,730	2.473%	90.0%	Y	\$ 2.70	\$ 689,310	\$ 862,327	ELGC	Large General Service	e, \$ 0.10910	\$ 30,668.01
Tourning 01 Cruith Cours Cruics Tourning	11 267 720	2.0420/	80.0%	V	¢ 2.70	¢ 920.200	1 00C 145			. ć 0.10010	¢ 20,402.05
Terminal 91 – Smith Cove Cruise Terminal	11,367,730	2.943%	89.6%		\$ 2.70				Large General Service		
Fishermen's Terminal – I-3 Shipyard	8,301,100	1.056%	91.2%		\$ 3.20				Medium General Serv		· · ·
Pier 66 – Anthony's Restaurant	782,760	6.581%	90.8%		\$ 3.10				Medium General Serv		
Pier 66 – World Trade Center West	Unknown	Unknown	89.0%	Y	\$ 3.20	\$ 278,400	\$ 348,278	EMDD	Medium General Serv	<i>i</i> \$ 0.10370	\$ 10,380.37
	4 047 000	1.0.440/	04.4%		¢ 2.20	¢ 100.700	427.240			0 40070	¢ 2,650,57
Pier 66 – Bell Harbor International ConferenceCe	, ,	1.841%	84.1%		\$ 3.20				Medium General Serv		
Pier 66 – Bell Harbor Marina Office	356,240	3.425%	83.0%	Y	\$ 3.20	\$ 37,760	\$ 47,238	EMDD	Medium General Serv	<i>i</i> \$ 0.10370	\$ 1,265.14
	44 267 720	2 20 49/	04.20/		¢ 2.00	¢	6 044.525	51.00			¢ 27.220.55
Terminal 91 – A-1 Warehouse	11,367,730	2.204%	84.2%	Ŷ	\$ 2.80	\$ 675,080	\$ 844,525	ELGC	Large General Service	, \$ 0.10910	\$ 27,329.55
Terminal 01 C 172 Commonial	11 267 720	4 2 4 2 0/	05 40/	V	ć 2.00	ć 1 017 100				. ć 0.10010	¢ 53.963.67
Terminal 91 – C-173 Commercial	11,367,730	4.343%	85.4%		\$ 2.80				Large General Service		
Terminal 91 - Smith Cove Covered Walkways	11,367,730	1.689%	85.0%		\$ 2.80				Large General Service	-	
Fishermen's Terminal – C-2 Nordby	8,301,100	0.847%	91.0%		\$ 3.20			EMDC	Medium General Serv		
Fishermen's Terminal – N-3 Netshed Storage	8,301,100	1.049%	91.2%		\$ 3.00				Medium General Serv		
Fishermen's Terminal – N-4 Netshed Storage	8,301,100	0.812%	91.2%		\$ 3.00				Medium General Serv		
Fishermen's Terminal – N-6 Netshed Storage	8,301,100	0.902%	91.2%		\$ 3.00				Medium General Serv		
Fishermen's Terminal – N-7 Netshed Storage	8,301,100	1.213%	91.1%		\$ 3.00	· · ·			Medium General Serv		
Fishermen's Terminal – N-8 Netshed Storage	8,301,100	1.213%	91.1%		\$ 3.00			EMDC	Medium General Serv		
Maritime Industrial Center – A-1Warehouse/Sho	· · · · · · · · · · · · · · · · · · ·	16.612%	88.5%		\$ 3.00				Medium General Serv		
Maritime Industrial Center – A-2Warehouse/Sho		3.537%	80.4%		\$ 3.20				Medium General Serv		
Maritime Industrial Center – A-5Warehouse/Sho	,				\$ 3.50			EMDC	Medium General Serv		
Shilshole Bay Marina – A-5 Office Building	6,493,434	0.227%	91.9%		\$ 3.50			ELGC	Large General Service		
Shilshole Bay Marina – M-5 Restroom/ShowerFa		0.167%	86.0%		\$ 3.50			ELGC	Large General Service		
Shilshole Bay Marina – M-6 Restroom/ShowerFa		0.143%	90.7%		\$ 3.50			ELGC	Large General Service		
Terminal 102 – Building A	230,045	45.687%	90.9%		\$ 3.00			ESMCM	Small General Service		
Terminal 102 – Building B	351,118	28.184%	87.4%		\$ 3.00			ESMCM	Small General Service		
Terminal 91 – M-86 Office	11,367,730	0.147%	84.6%		\$ 3.50			ELGC	Large General Service		
Fishermen's Terminal – C-3 West Wall	8,301,100	0.390%	90.6%		\$ 3.30				Medium General Serv	-	
Fishermen's Terminal – N-9 Netshed Storage	8,301,100	1.275%	91.1%	Y	\$ 3.00	\$ 276,300	\$ 345,651	EMDC	Medium General Serv	/ \$ 0.09170	\$ 9,701.86
Terminal 91 – C-155 Warehouse	11,367,730	3.544%			\$ 2.80				Large General Service		
Fishermen's Terminal – C-10 Office	8,301,100	0.169%	91.5%		\$ 3.50			EMDC	Medium General Serv		· · ·
Fishermen's Terminal – I-2 Fire Department	8,301,100	0.075%	91.2%		\$ 4.00			EMDC	Medium General Serv		
Fishermen's Terminal – I-8 Industrial	8,301,100	0.823%	91.2%	Y	\$ 3.30	\$ 186,120	\$ 232,836	EMDC	Medium General Serv	/ \$ 0.09170	\$ 6,267.70

From SWCES Load Forecast Analysis Report

Port of Seattle Solar Screening Tool		From SWCES Load	T UIECast Analysis	Report			
Property Name	. , ,	Utility Hosting Capacity (kVA)	Port Substation Capacity (kVA)	Hosting Capacity Constraint Y/N	Substation Feeding	Utility Feeder	Downtown Spot Network Y/N?
Shilshole Bay Marina – A-1 Admin Building	31.6	7500	1000	N	6	substation feeder	N
Terminal 91 – C-175 Commercial	28.1	7500	1500	N	SS-1	MSS-1 South	N
Terminal 91 – Smith Cove Cruise Terminal	28.1	7500	3000		0	MSS-1 South	N
Fishermen's Terminal – I-3 Shipyard	36.9	12800	2000			SCL - 2658	Ν
Pier 66 – Anthony's Restaurant			Unknown	Unknown	Unknown	Unknown	Y
Pier 66 – World Trade Center West	33.6	Unknown	Unknown	Unknown	Unknown	Unknown	Y
Pier 66 – Bell Harbor International ConferenceCe	37.5	Unknown	Unknown	Unknown	Unknown	Unknown	Y
Pier 66 – Bell Harbor Marina Office	37.3	Unknown	Unknown	Unknown	Unknown	Unknown	Υ
Terminal 91 – A-1 Warehouse	30.9	7500	3000	N	SS-8A	MSS-1 South	N
 Terminal 91 – C-173 Commercial	30.6	7500	750	Ν	SS-2	MSS-1 South	N
Terminal 91 - Smith Cove Covered Walkways	30.7	7500	3000			MSS-1 South	N
Fishermen's Terminal – C-2 Nordby	37.2	12800	1500		0	SCL - 2658	N
Fishermen's Terminal – N-3 Netshed Storage	35.7	12800	1500			SCL - 2658	N
Fishermen's Terminal – N-4 Netshed Storage	32.7	12800	1500			SCL - 2658	N
Fishermen's Terminal – N-6 Netshed Storage	34.3	12800	1500			SCL - 2658	N
Fishermen's Terminal – N-7 Netshed Storage	34.9		1500			SCL - 2658	N
Fishermen's Terminal – N-8 Netshed Storage	34.9					SCL - 2658	N
Maritime Industrial Center – A-1Warehouse/Sho			Unknown	Unknown	Unknown	Unknown	N
Maritime Industrial Center – A-2Warehouse/Sho		Unknown	Unknown	Unknown	Unknown	Unknown	N
Maritime Industrial Center – A-5Warehouse/Sho			Unknown		Unknown		N
Shilshole Bay Marina – A-5 Office Building	34.6					substation feeder	
Shilshole Bay Marina – M-5 Restroom/ShowerFa	39.9	7500	500	N	8	substation feeder	N
Shilshole Bay Marina – M-6 Restroom/ShowerFa	38.1	7500	500	N	9	substation feeder	N
Terminal 102 – Building A	27.8	Unknown	Unknown	Unknown	Unknown	Unknown	N
Terminal 102 – Building B	28.6	Unknown	Unknown	Unknown	Unknown	Unknown	N
Terminal 91 – M-86 Office	38.9	7500	Unknown	Ν	Unknown	MSS-1 South	N
Fishermen's Terminal – C-3 West Wall	39.5	12800	1500	Ν	4	SCL - 2658	N
Fishermen's Terminal – N-9 Netshed Storage	35.6	12800	1500	Ν	7	SCL - 2658	N
Terminal 01 C 155 Warehouse	20 5	7500	750	N	SS-13	MSS 1 South	N
Terminal 91 – C-155 Warehouse	30.5					MSS-1 South	N
Fishermen's Terminal – C-10 Office	46.6		2000			SCL - 2658	N
Fishermen's Terminal – I-2 Fire Department	51.8		2000			SCL - 2658	N
Fishermen's Terminal – I-8 Industrial	37.1	12800	1500	IN	/	SCL - 2658	Ν

Property Name	Notes
	Resized to allow interconnection in building electrical and avoid trenching and feeder tap to substation, Production updated with Boeing Field TMY3,
Shilshole Bay Marina – A-1 Admin Building	\$231,900 before Port Overhead
	Resized to accommodate either MDP (1600A) or Substation (2000A) interconnection, Production updated with Boeing Field TMY3, Detailed cost esti
Terminal 91 – C-175 Commercial	Overhead
Terreiral 01 Cruith Cause Cruitae Terreiral	
Terminal 91 – Smith Cove Cruise Terminal	Resized to accommodate MDP breaker frame limits (400A), Production updated with Boeing Field TMY3, Detailed cost estimate at \$2.75; \$834,774 k
Fishermen's Terminal – I-3 Shipyard	
Pier 66 – Anthony's Restaurant	
Pier 66 – World Trade Center West	
Pier 66 – Bell Harbor International ConferenceCe	e Spot Network issues, interconnection complexity within building electrical system. Resized to possibly allow a 225A panel interconnection
Pier 66 – Bell Harbor Marina Office	Spot Network issues. Resized for Microinverter design, and roof anchors
Terminal 91 – A-1 Warehouse	Recommend deprioritizing due to complex roof geometry and sky lights likely increasing cost of installation.
Terminal 91 – C-173 Commercial	Note from Port Engineers indicates MDP is beyond useful life and interconnection not recommended.
Terminal 91 - Smith Cove Covered Walkways	Deprioritized due to unknown electrical infrastructure
Fishermen's Terminal – C-2 Nordby	
Fishermen's Terminal – N-3 Netshed Storage	Model updated for keepout height
Fishermen's Terminal – N-4 Netshed Storage	
Fishermen's Terminal – N-6 Netshed Storage	Model updated for keepout location
Fishermen's Terminal – N-7 Netshed Storage	
Fishermen's Terminal – N-8 Netshed Storage	Model updated for trees to the west
Maritime Industrial Center – A-1Warehouse/Shc	Model row alignment location adjusted
Maritime Industrial Center – A-2Warehouse/Shc	Model pitched roof line adjusted eliminating a row
Maritime Industrial Center – A-5Warehouse/Shc	
Shilshole Bay Marina – A-5 Office Building	
Shilshole Bay Marina – M-5 Restroom/ShowerFa	3
Shilshole Bay Marina – M-6 Restroom/ShowerFa	a Building is new on satellite. POS records may need update
Terminal 102 – Building A	Port Directed, will not be considered for solar
Terminal 102 – Building B	Port Directed, will not be considered for solar
Terminal 91 – M-86 Office	Substation 4 removed as part of berth project, new one will be installed
Fishermen's Terminal – C-3 West Wall	Deprioritized from Port
Fishermen's Terminal – N-9 Netshed Storage	Deprioritized from Port
	Deprioritized by Port- Building may be demo'd as part of the Uploands Redevelopment. System size limited to 300kW-AC based on estimated transfo
Terminal 91 – C-155 Warehouse	line side tap or direct connect. Roughly 160kW-AC could be connected to MDP by 120% rule (1200A MDP, 1200A Main)
Fishermen's Terminal – C-10 Office	SCL Feeder 2658 is most limiting, but no information on what sites are served
Fishermen's Terminal – I-2 Fire Department	Building is on Dock 4
Fishermen's Terminal – I-8 Industrial	

3, Detailed cost estimate at \$2.34;
timata at 62.69, 6694.226 bafara Dart
timate at \$2.68; \$684,236 before Port
before Port Overhead
ormer size (no markings visible) assuming

Port of Seattle Solar Screening Tool	Port Provided or As	sisted Data in Blue						
Property Name	Property Address	Port Campus	Google Plus Code	Top 10 Y/N	Stoplight Assessment (Updated)	Site Owner -	Site Operator	Roof Square Footage
Fishermen's Terminal – M-15 Restroom	12 20th Ave W, Seattle, WA 98199	Fishermen's Terminal	MJ58+6RX Seattle, Washington	N		1 Port of Seattle	Port of Seattle	650
Fishermen's Terminal – M-2 Restroom	2 15th Place W, Seattle, WA 98119	Fishermen's Terminal	MJ4F+73 Seattle, Washington	Ν		1 Port of Seattle	Port of Seattle	650
Fishermen's Terminal – M-4 Industrial	3919 18th Ave W, Seattle, WA 98119	Fishermen's Terminal	MJ4F+47F Seattle, Washington	N		1 Port of Seattle	Port of Seattle	2,275
Fishermen's Terminal – N-10 NetshedStorage	1015 16th Ave W, Seattle, WA 98119	Fishermen's Terminal	MJ3C+VRW Seattle, Washington	N	•	1 Port of Seattle	Port of Seattle	11,583
Fishermen's Terminal – N-11 NetshedStorage	1120 16th Ave W, Seattle, WA 98119	Fishermen's Terminal	MJ3C+RR Seattle, Washington	N		1 Port of Seattle	Port of Seattle	3,900
Maritime Industrial Center – A-3Warehouse/Sh	o 2620 W Commodore Way, Seattle, WA 98199	Maritime Industrial Center	MJ75+7RF Seattle, Washington	N		1 Port of Seattle	Port of Seattle	2,511
Maritime Industrial Center – A-4Warehouse/Sh	o 2620 W Commodore Way, Seattle, WA 98199	Maritime Industrial Center	MJ75+5Q Seattle, Washington	N		1 Port of Seattle	Port of Seattle	2,848
Shilshole Bay Marina – I-1 Little ConeyRestaura	n 8003 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHPW+JP Seattle, Washington	Ν		1 Port of Seattle	Port of Seattle	1,200
Shilshole Bay Marina – M-1 Restroom/ShowerF	a 6701 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHGR+PWM Seattle, Washingto	r N		1 Port of Seattle	Port of Seattle	480
Shilshole Bay Marina – M-7 Restroom/ShowerF	a 8003 Seaview Ave NW, Seattle, WA 98117	Shilshole Bay Marina	MHPW+JJR Seattle, Washington	Ν		1 Port of Seattle	Port of Seattle	2,400
Terminal 100 - Marine Maintenance Shop South		Terminal 100	HMF6+PG Seattle, Washington	N		1 Port of Seattle	Port of Seattle	32,192
Terminal 91 – C-156 Warehouse	2001 W Garfield St #C156, Seattle, WA 98119	Terminal 91	JJQ9+H27 Seattle, Washington	Ν	-	1 Port of Seattle	Port of Seattle	8,000
Terminal 91 – W-390 Cold Storage	2001 W Garfield St #W390, Seattle, WA 98119	Terminal 91	JJP8+3W3 Seattle, Washington	N	-	1 Port of Seattle	Tenant Ground Lease	117,556
Terminal 91 – W-391 Cold Storage	2001 W Garfield St #W391, Seattle, WA 98119	Terminal 91	JJP8+CW4 Seattle, Washington	Ν	-	1 Port of Seattle	Tenant Ground Lease	105,900
Terminal 91 – W-392 Food Processing	2001 W Garfield St #W392, Seattle, WA 98119	Terminal 91	JJP9+Q2 Seattle, Washington	Ν		1 Port of Seattle	Tenant Ground Lease	150,100
Terminal 91 – W-40 Food Processing	2001 W Garfield St #W40, Seattle, WA 98119	Terminal 91	JJM8+PF Seattle, Washington	Ν		1 Port of Seattle	Port of Seattle	51,868

Port of Seattle Solar Screening Tool		Port Provided or Assisted Data	a in Blue		1 is low, 10 is high		1 is low, 10 is	nigh		
Property Name	Building Information	Building Type	Roof Type -From Site	Roof Age - Port	Roof Condition (1- 10) - Satellite	Roof Shape Complexity - Satellite (1-10)	Roof Obstruction Complexity (1 10) - Satellite		Roof Area Useable % Estimate- Satellite	Glare evaluation recommended ? Y/N
Fishermen's Terminal – M-15 Restroom	Brick - Blockhouse	Restrooms	Membrane - TPO	Unknown	8	3 1		6	50%	N
Fishermen's Terminal – M-2 Restroom	Brick - Blockhouse	Restrooms	Membrane - PVC	Unknown	5	3 1		6	50%	N
Fishermen's Terminal – M-4 Industrial	Corrugated Steel, industrial	Industrial	Corrugated metal and FRP	Unknown		2 2	2	14	30%	N
Fishermen's Terminal – N-10 NetshedStorage	Wood Framed Net Shed	Net Shed	Standing Seam, Metal and FRP	Unknown		2	2	. 7	<mark>/</mark> 90%	N
Fishermen's Terminal – N-11 NetshedStorage	Wood Framed Net Shed	Net Shed	Standing Seam, Metal	Unknown		7 2	. 2	. 7	90%	N
Maritime Industrial Center – A-3Warehouse/Sho	Steel Framed Warehouse	Warehouse/Shop	Corrugated Metal	Unknown		5 2	2	. 8	45%	N
Maritime Industrial Center – A-4Warehouse/Sho	Steel Framed Warehouse	Warehouse/Shop	Standing Seam Metal	Unknown	-	7 2		2 7	45%	N
Shilshole Bay Marina – I-1 Little ConeyRestauran	Small Restaurant	Restaurant	Torch Down	Unknown		5 7	′ <u>(</u>	21	. 20%	N
Shilshole Bay Marina – M-1 Restroom/ShowerFa	CMU Wall - Restroom	Restrooms	Torch Down	Unknown	8	3 1		6	50%	N
Shilshole Bay Marina – M-7 Restroom/ShowerFa	Steel Frame Bathroom	Restrooms	Standing Seam	Unknown		7 1		13	20%	N
Terminal 100 - Marine Maintenance Shop South	CMU industrial, unknown fram	Office/Vehicle Maintenance		Unknown		7 6	5	16		
Terminal 91 – C-156 Warehouse		Office		Unknown		5 4	. f	5 14		
Terminal 91 – W-390 Cold Storage		Refrigerated Warehouse/Food		Unknown		5 1		8	<mark>3</mark> 70%	
Terminal 91 – W-391 Cold Storage	CIP Concrete Structure	Refrigerated Warehouse/Food	Membrane - TPO	Unknown	-	7 1		. 5	90%	
Terminal 91 – W-392 Food Processing	CIP Concrete Structure	Refrigerated Warehouse/Food	Membrane - TPO	Unknown	-	7 2		9	50%	
Terminal 91 – W-40 Food Processing	CIP Concrete Structure	Food Processing/Office	Liquid Applied	Unknown		5 6) 	15	50%	N

Port of Seattle Solar Screening Tool											
		Rooftop	Roof Slope	Roof Azimuth			Module AC Nameplate (kW-			Estimated Production	
Property Name	Array visibility estimated Y/N		(Degrees)		PV Application/Technology	DC)	AC)		Shading%		Meter Type
Fishermen's Terminal – M-15 Restroom	N	8.25	0		Flush Mount, Flat Roof	4	4	1,010	0.00%		Campus Master
Fishermen's Terminal – M-2 Restroom		10	0		Flush Mount, Flat Roof	8	1	667	28.50%		Campus Master
Fishermen's Terminal – M-4 Industrial	Y, Highway, some ground	18.5	27	115	Flush Mount, Pitched Roof	15	15	1,041	2.70%	15,310	Campus Master
Fishermen's Terminal – N-10 NetshedStorage	Y, Highway	21	4.4	180	Flush Mount, Pitched Roof	125	100	1,063	0.00%	132,900	Campus Master
Fishermen's Terminal – N-11 NetshedStorage	Y, Highway	20	5	180	Flush Mount, Pitched Roof	141	133	1,060	0.00%	149,100	Campus Master
Maritime Industrial Center – A-3Warehouse/Shc		10			Flush Mount, Pitched Roof	8	6	944	0.00%	7,402	Campus Master
Maritime Industrial Center – A-4Warehouse/Sho	Y, Road traffic	9.4		180	Flush Mount, Pitched Roof	17	14	1,204	0.90%	20,070	Campus Master
Shilshole Bay Marina – I-1 Little ConeyRestauran		12.5	0		Flush Mount, Flat Roof	3	3	377	6.90%		Campus Master
Shilshole Bay Marina – M-1 Restroom/ShowerFa		9	0	180	Flush Mount, Flat Roof	8	7	917	0.90%	7,190	Campus Master
Shilshole Bay Marina – M-7 Restroom/ShowerFa	Y, Marina traffic	16	5	171	Flush Mount - Pitched Roof	9	7	1,039	0.00%	9,165	Campus Master
Terminal 100 - Marine Maintenance Shop South	Y, Highway	18			Fixed Tilt, Flat Roof	60	58	1,090	6.30%		Building Meter
Terminal 91 – C-156 Warehouse	N	13			Flush Mount - Flat Roof	89	67	1,054	0.00%		Campus Master
Terminal 91 – W-390 Cold Storage	Y, Road traffic	38.5	0		Fixed Tilt, Flat Roof	205	200	1,192	1.10%		Campus Master
Terminal 91 – W-391 Cold Storage	Y, Road traffic	42			Fixed Tilt, Flat Roof	558	500	1,190	1.10%		Campus Master
Terminal 91 – W-392 Food Processing	Y, Road traffic	25			Fixed Tilt, Flat Roof	443	400	1,191	1.20%	527,600	Campus Master
Terminal 91 – W-40 Food Processing	Y, Road traffic	22.5	0	180	Fixed Tilt, Flat Roof	357	300	1,177	1.00%	420,600	Campus Master

Port of Seattle Solar Screening Tool						Port Provided or	Assisted Data in Blue						
			Total Solar										
		Percent Offset of			Estimated Cost p	er RC	OM Installed Cost	ROM Cost with					
	Total Electricity		Fraction		Watt (before			25.1% Port		SCL Rate Code	\$/kWh (as of Oc	t Year	r 1 Energy
Property Name	Use (2023 kWh)	Electricity (%)	(TSRF)	>5kW Y/N	overhead marku	o) Ap	oplied)	Overhead Applied	SCL Rate Code	Definition	2024)	Savi	ings
Fishermen's Terminal – M-15 Restroom	8,301,100	0.054%	85.3%	Ν	\$ 4.0	00 \$	17,600	\$ 22,018	EMDC	Medium General Serv	\$ 0.09170)\$	408.62
Fishermen's Terminal – M-2 Restroom	8,301,100	0.063%	61.0%	Y	\$ 3.5	50 \$	27,440	\$ 34,327	EMDC	Medium General Serv	\$ 0.09170)\$	479.22
Fishermen's Terminal – M-4 Industrial	8,301,100	0.184%	85.6%	Y	\$ 3.5	50 \$	51,450	\$ 64,364	EMDC	Medium General Serv	\$ 0.09170)\$	1,403.93
Fishermen's Terminal – N-10 NetshedStorage	8,301,100	1.601%	86.0%	Y	\$ 3.0	00 \$	375,000	\$ 469,125	EMDC	Medium General Serv	\$ 0.09170	1 \$	12,186.93
Fishermen's Terminal – N-11 NetshedStorage	8,301,100	1.796%	85.6%	Y	\$ 3.0	00 \$	423,000	\$ 529,173	EMDC	Medium General Serv	\$ 0.09170) s	13,672.47
	0,000_,000				÷		0,000	+ 010)110			· · · · · · · · · · · · · · · · · · ·	+	
Maritime Industrial Center – A-3Warehouse/Sho	853,600	0.867%	83.6%	Y	\$ 3.5	50 \$	27,440	\$ 34,327	EMDC	Medium General Serv	\$ 0.09170) \$	678.76
Maritime Industrial Center – A-4Warehouse/Sho	853,600	2.351%	98.3%	Y	\$ 3.2	20 \$	53,440	\$ 66,853	EMDC	Medium General Serv	\$ 0.09170)\$	1,840.42
Shilshole Bay Marina – I-1 Little ConeyRestauran	6,493,434	0.044%	81.2%	Ν	\$ 4.0	00 \$	11,760	\$ 14,712	ELGC	Large General Service,	,\$ 0.10910)\$	313.34
Shilshole Bay Marina – M-1 Restroom/ShowerFa	6,493,434	0.111%	85.3%	Y	\$ 3.5	50 \$	27,440	\$ 34,327	ELGC	Large General Service,	,\$ 0.10910)\$	784.43
Shilshole Bay Marina – M-7 Restroom/ShowerFa	6,493,434	0.141%	89.6%	Y	\$ 3.5	50 \$	30,870	\$ 38,618	ELGC	Large General Service,	,\$ 0.10910)\$	999.90
Terminal 100 - Marine Maintenance Shop South	370,066	17.759%	86.4%			25 \$	195,975			Small General Service,	\$ 0.11810)\$	7,761.53
Terminal 91 – C-156 Warehouse	11,367,730	0.827%	85.3%			L <mark>O</mark> \$	276,520			Large General Service,			10,256.49
Terminal 91 – W-390 Cold Storage	11,367,730	2.158%	91.2%		\$ 2.8		574,000			Large General Service,		-	26,762.23
Terminal 91 – W-391 Cold Storage	11,367,730	5.844%	91.2%		\$ 2.8		1,562,400			Large General Service,			72,475.13
Terminal 91 – W-392 Food Processing	11,367,730	4.641%	91.1%		\$ 2.8				ELGC	Large General Service,			57,561.16
Terminal 91 – W-40 Food Processing	11,367,730	3.700%	90.7%	Y	\$ 2.9	90 \$	1,035,300	\$ 1,295,160	ELGC	Large General Service,	,\$ 0.10910	1\$	45,887.46

From SWCES Load Forecast Analysis Report

			Port Substation		Substation	114124 - Fooder	Downtown Spot
Property Name	Port Overhead)	Capacity (kVA)	Capacity (kVA)	-	Feeding	Utility Feeder	Network Y/N?
Fishermen's Terminal – M-15 Restroom	53.9	12800				SCL - 2658	N
Fishermen's Terminal – M-2 Restroom	71.6					SCL - 2658	N
Fishermen's Terminal – M-4 Industrial	45.8	12800	2000	N	6	SCL - 2658	N
Fishermen's Terminal – N-10 NetshedStorage	38.5	12800	1500	N	7	SCL - 2658	N
Fishermen's Terminal – N-11 NetshedStorage	38.7	12800	1500	N	7	SCL - 2658	N
Maritime Industrial Center – A-3Warehouse/Sho	50.6	Unknown	Unknown	Unknown	Unknown	Unknown	N
Maritime Industrial Center – A-4Warehouse/Sho	36.3	Unknown	Unknown	Unknown	Unknown	Unknown	N
Shilshole Bay Marina – I-1 Little ConeyRestaurar	47.0	7500	225	N	10	substation feeder	N
Shilshole Bay Marina – M-1 Restroom/ShowerFa	a 43.8	7500	750	N	1	substation feeder	N
Shilshole Bay Marina – M-7 Restroom/ShowerF	a 38.6	7500	225	N	10	substation feeder	N
Terminal 100 - Marine Maintenance Shop South	31.6	500	500	N	North Yard Service	North Yard Service	N
Terminal 91 – C-156 Warehouse	33.7	7500	750	N	SS-13	MSS-1 South	Ν
Terminal 91 – W-390 Cold Storage	26.8	7500	2500	N	SS-12	MSS-2 North	N
Terminal 91 – W-391 Cold Storage	27.0	7500	2500	N	SS-12	MSS-2 North	N
Terminal 91 – W-392 Food Processing	27.0	7500	2500	N	SS-12	MSS-2 North	N
Terminal 91 – W-40 Food Processing	28.2	7500	1500	N	SS-9	MSS-2 North	N

Notes
Roof structure appears visible through roofing which implies FRP or fiberglass. Strength concerns
Roof structure appears visible through roofing which implies FRP or fiberglass. Strength concerns
o
0
n
a
a Model Updated- more conservative on roof penetration keepouts so array shrank.
n Older CMU building with large section of roof with curved barrel roof shape. Difficult install shape. Model updated, LIDAR misfit building height previ
Modular buildings connected together based on the roof and AC unit spacing on the north wall

viously.		
•		

Appendix B Port of Seattle Maritime Solar Feasibility Study Decision Matrix

Port of Seattle Maritime Solar Feasibility Study | Decision Matrix

Purpose: To narrow down feasible rooftops down to the top three (3) candidates for our solar consultant to develop fully (i.e. schematic drawings, detailed cost estimates, etc.). Please enter notes/input on the corresponding line for your team based on your experience with each building.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
P66 Bell Harbor Marina Office	12,200	(12,200 kWh / 361,240 kWh * 100) = 3.37%	17	\$37,800	\$1,265	\$18,218	Good for solar, standing seam metal roof, minimal roof penetrations required	Panelboard has several spare locations for solar interconnection	Environmental (Jacob/Cam/Jessica)	[Jacob] intercor rooftop passeng [Jessica product worthwi combin efficien reduce
									Environmental (David/Lucian)	[Lucian] electrifi building electric solar m be valua energy b
									Planning (Paul)	[Paul] G building
									Real Estate (Susie)	[Susie] visitors, the P66 conditio
									Facilities (Rob)	[Rob] I'l would c MM Ele to marin power i
									Structural Engineering (Perry)	[Perry] weight. modific
									Electrical Engineering (Kemeria)	Conside potentia storage conside

s/Feedback

b] Located in SCL's downtown spot network so sizing array and onnection strategy must include backfeed prevention. Small p compared to others. Solar would be visible by cruise ship ngers.

ca] Good location for public education/informative plaque. Low ction, but if it's a high percentage of facility use than it may be more while for resilience and continuous operations. If this could be ined with the Bell Harbor conference center/cruise we may find encies of scale if we need to do things like battery storage. Would e 5.3 metric tons CO2e per year (EPA).

n] P66 doesn't have major capacity issues currently. Building ification is a modest contributor to peak loads at this site, but as ngs electrify, they will ultimately be the largest contributor to overall icity consumption at P66 in the longer-term. The takeaway is that may not contribute to peak load reduction at the site but appears to uable in the long-term considering the overall high consumption of y by buildings here.

General comments: Is there other electrical equipment in the ng or on site that should be replaced due to age and/or condition?

] This roof is visible to Anthonys' upstairs diners and P66 rooftop rs, so has very good public visibility. This roof was excluded from 66 2022 roof capital project, and I'm not sure of the existing tion (i.e. when roof overlay/replacement would be needed).

I'll leave it up to the engineers to determine panel capacity but caution on assuming there is space in the panels before talking to lectricians. We have temporarily added breakers to provide power rina events in the past and there may be plans to add permanent in the marina in the future.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member ications or design validation.

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery e device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
P66 Bell Harbor Conf Center/Cruise	35,290	(35,290 kWh / 2,058,256 kWh * 100) = 1.71%	16	\$109,800	\$3,659	\$52,600	Good for solar, minimal roof penetrations required	No obvious interconnection location as building modifications over the years have filled panels	Environmental (Jacob/Cam/Jessica)	[Jacob] Cruise/o be done network backfee control replace (tenant) agreem roof rep downtoo to grid re [Jessica (P66 ap) for exan pretty h Need to
									Environmental (David/Lucian)	[Lucian] electrifi building electrici solar ma be valua energy b
									Planning (Paul)	[Paul] C during t installin
									Real Estate (Susie)	[Susie] [panels c schedul schedul separate explore unreaso think wa
									Facilities (Rob)	No addi
									Electrical Engineering (Kemeria)	Conside potentia storage conside
								Structural Engineering (Perry)	[Perry] L weight. modifica	
									Cruise (Marie/Carma/Linda)	Need fo

] Energy intensive building could benefit from solar.

e/conference season is well defined so off-season construction can ne to avoid impacts to operations. Located in SCL's downtown spot ork so sizing array and interconnection strategy must include eed prevention. South side of building may have safety/access ol issues due to the public rooftop plaza nearby. Entire roof was just ced in 2024. Building used by CTA (tenant) and Conference Center nt) who pays the electric bills and would likely need some sort of ment. Solar would be visible by cruise ship passengers. Brand new eplaced in 2024. Consultant recommends deprioritizing due to the town spot network grid restrictions and increased project cost due d restrictions.

ca] Would building this out expand our ability to provide EV charging apron) or other electrification efforts (if we need to add panel space, ample)? If installed, would be positive press for cruise. Low cost for high number. Would reduce 15.4 metric tons CO2e per year (EPA). to understand building energy use to help with decision-making.

In] P66 doesn't have major capacity issues currently. Building ification is a modest contributor to peak loads at this site, but as ngs electrify, they will ultimately be the largest contributor to overall icity consumption at P66 in the longer-term. The takeaway is that may not contribute to peak load reduction at the site but appears to uable in the long-term considering the overall high consumption of y by buildings here.

Consultant noted that the impact from shading of cruise ships g the cruise season would not significantly diminish the feasibility of ling an array on this roof.

e] Design should include seagull damage protection (P69 solar s damaged by seagulls have required replacement), construction dule will have to work around cruise and conference center dules, is the distance to electrical room reasonable, please ately meter solar panels, plan for uninvited visitors, who typically re the P66 roof via the public rooftop deck. The ROM pricing seems sonably low...please compare pricing to P69 solar project which I was \$500K-ish.

ditional comment.

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member ications or design validation.

for metering so costs can be passed on to tenants.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes	
T91 C-173	493,700	(493,700 kWh / 178,614 kWh * 100) = 276% This site would produce more than the building consumes and be able to feed excess back to the grid	14	\$1,320,000	\$53,855	\$1,014,700	Okay for solar, limited information on design drawings, roof addition was overlay which reduces likelihood of ballasted system	Electrical room inaccessible due to construction, likely capacity due to abandoned cold storage equipment	Environmental (Jacob/Cam/Jessica)	[Jacob] repair w (no gas) equipm [Jessica microgr and cou Would r locatior	
									Environmental (David/Lucian)	[Lucian infrastro	
									Planning (Paul)	[Paul] [for pow generat outside context	
									Real Estate (Lily)	[Lily] Pe project	
									Facilities (Mark/Windy)	No con	
									Structural Engineering (Perry)	[Perry] weight. modific	
										Electrical Engineering (Kemeria)	Consid potenti storage conside

b) Primarily warehouse space serving fleet with some light industrial work. Electrical loads primarily LED lighting. All electric building as). Consultant recommends deprioritizing due to electrical ment being at end-of-life.

ca] It's my understanding that we could use solar power at T91 as a grid, and this is a lot of power generation. This is a high energy user ould help grid resilience at T91 where we have limited capacity. d reduce 216 metric tons CO2e per year (EPA). This is a priority on and use type.

n] No forecasted capacity constraints on the electrical tructure (Substation 2) serving this building currently.

Defer to comments from Engineering on the appropriate location wer connection to building and feasibility of building's use of power ated by array. Consideration of microgrid development at T91 de the scope of this project and would need to be considered in the xt of an overall electrical concept plan for the site.

Per Lease, Port is responsible for roof M&R. Good candidate for roof ots.

mment.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member ications or design validation.

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
T91 C-175	293,200 (293,200 kWh / 2,011,500 kWh * 100) = 14.5%	2,011,500 kWh *					Good for solar, seismic attachments needed required	Solar could be interconnected into the MDP directly or use compressor breakers after system modification	Environmental (Jacob/Cam/Jessica)	[Jacob] building require renewa [Jessica microg and cou does th it doesr per yea
									Environmental (David/Lucian)	[Lucian infrastr
									Planning (Paul)	[Paul] [for pow generat outside context
									Real Estate (Lily)	[Lily] Pe a good
									Facilities (Mark/Windy)	No con
									Structural Engineering (Perry)	[Perry] weight. modifio
								Electrical Engineering (Kemeria)	Consid potenti storage consid	

b) Refrigerant lines run across roof. Lineage responsible for interior ng maintenance, so solar tied into the building electrical would re an agreement modification. Lineage is actively pursuing vables in portfolio and are very interested in project potential.

ca] It's my understanding that we could use solar power at T91 as a grid, and this is a lot of power generation. This is a high energy user ould help grid resilience at T91 where we have limited capacity. Why this location (larger SF) produce less kWh than the building above sn't look like it's obstructed? Would reduce 128 metric tons CO2e ear (EPA). This is a priority location and use type.

n] No forecasted capacity constraints on the electrical tructure (Substation 1) serving this building.

Defer to comments from Engineering on the appropriate location wer connection to building and feasibility of building's use of power ated by array. Consideration of microgrid development at T91 de the scope of this project and would need to be considered in the xt of an overall electrical concept plan for the site.

Per lease, Port is responsible for roof M&R. Another reason for being d candidate for solar roof.

mment.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member ications or design validation.

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
T91 A-1 Warehouse	250,500	(250,500 kWh / 636,900 kWh * 100) = 39.3%	15	\$675,100	\$27,328	\$452,800	Good for solar, standing seam metal roof, minimal roof penetrations required	Significant spare capacity due to building no longer being used for manufacturing	Environmental (Jacob/Cam/Jessica)	[Jacob] until sk increas [Jessica microgi resilien metric f
									Environmental (David/Lucian)	[Luciar (SS-8A) current
									Planning (Paul)	No con
									Real Estate (Lily)	[Lily] Pe <u>membr</u> compli (Moren
									Facilities (Mark/Windy)	[Mark] probler
								Structural Engineering (Perry)	[Perry] weight, modific	
									Electrical Engineering (Kemeria)	Consid potenti storage conside

b] Skylights in poor condition due to age. Should consider waiting skylights are eliminated before doing solar as capacity could be ased.

ca] It's my understanding that we could use solar power at T91 as a grid, and this is a lot of power generation and could help grid ence at T91 where we have limited capacity. Would reduce 109 c tons CO2e per year (EPA). May support EVSE for tenant equipment electrification.

n] No identified capacity constraints on electrical infrastructure A) serving this building. Substation is at approx. 20% utilization ntly and projected to only increase to approx. 25% in 2050.

mment.

Per lease, TENANT/GF is responsible for maintaining roof <u>prane</u>, Port for roof <u>structure</u>. This can have cost implications and lications for any roof projects. Note that North American Fish Co not) is a subtenant with no direct leasing relationship with Port.

] Tenant is responsible for roofing, could present logistical ems for future maintenance, repair, replacement.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member ications or design validation.

ider and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
T91 Smith Cove Cruise Terminal	349,100	(349,100 kWh / 899,500 kWh * 100) = 38.8%	12	\$820,300	\$38,073	\$811,800	Good for solar, minimal roof penetrations required	Several spares on substation switchboard	Environmental (Jacob/Cam/Jessica)	[Jacob] before s well def operatio would li decarbo electric [Jessica microgr resilient metric t electrifi percept to unde
									Environmental (David/Lucian)	[Lucian] infrastru
									Planning (Paul)	[Paul] N loads ic outside context
									Real Estate (Lily)	No com
									Facilities (Mark/Windy)	[Mark] T team fo useful li provide
									Structural Engineering (Perry)	[Perry] weight. modific
									Electrical Engineering (Kemeria)	Conside potentia storage conside
									Cruise (Marie/Carma/Linda)	There is

b) Planned roof replacement soon and would need to be completed e solar installation. Skylights limit array layout. Cruise season is lefined so off-season construction can be done to avoid impacts to tions. Building used by CTA (tenant) who pays the electric bills and d likely need some sort of agreement. Looking to

bonize/convert RTUs to heat pumps eventually which will increase icity need. Solar would be visible by cruise ship passengers.

ca] It's my understanding that we could use solar power at T91 as a grid, and this is a lot of power generation and could help grid ence at T91 where we have limited capacity. Would reduce 152 c tons CO2e per year (EPA). May support ground transportation ification. Visible to cruise passengers could be good for public ption and education opportunities. Would need to see building use derstand if battery storage may be beneficial.

n] No forecasted capacity constraints to the electrical tructure serving the cruise terminal building.

Need to understand current condition of substation and any future identified for it. Consideration of microgrid development at T91 le the scope of this project and would need to be considered in the xt of an overall electrical concept plan for the site.

mment.

] There is a project submittal being generated from our Port Cruise for a Large Cap project (full roof replacement). The roof is past its l life and is failing in many areas. WPM has already had contractors de findings and recommendations for the roof.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member fications or design validation.

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment. is a reroofing project in planning – this may interfere.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
T91 Smith Cove Cruise Exterior Covered Walkways	192,000	(192,000 kWh / 899,500 kWh * 100) = 21.3% This assumes offsetting the Cruise Terminal electric usage	14	\$513,200	\$20,940	\$394,600	Good for solar, corrugated metal, minimal roof penetrations required	No electrical panels, substation would be least intrusive connection point	Environmental (Jacob/Cam/Jessica)	[Jacob] done to means h rooftop would b depriori substati [Jessica microgr at T91 w CO2e po public p
									Environmental (David/Lucian)	[Lucian] (SS-8A) current
									Planning (Paul)	[Paul] N loads ic outside context
									Real Estate (Lily)	No com
									Facilities (Mark/Windy)	[Mark] I area to
									Structural Engineering (Perry)	[Perry] l weight. modific
									Electrical Engineering (Kemeria)	Conside potentia storage conside
									Cruise (Marie/Carma/Linda)	No com

b) Cruise season is well defined so off-season construction can be to avoid impacts to operations. No existing electrical infrastructure s having to trench to the building or substation. Focusing on the op array should be the priority over the covered walkways. Solar d be visible by cruise ship passengers. Consultant recommends pritizing due to the increased project cost of interconnecting at the ation.

ca] It's my understanding that we could use solar power at T91 as a grid, this is a lot of power generation and could help grid resilience where we have limited capacity. Would reduce 83.9 metric tons per year (EPA). Visible to cruise passengers could be good for c perception and education opportunities.

n] No identified capacity constraints on electrical infrastructure A) serving this building. Substation is at approx. 20% utilization ntly and projected to only increase to approx. 25% in 2050.

Need to understand current condition of substation and any future identified for it. Consideration of microgrid development at T91 le the scope of this project and would need to be considered in the xt of an overall electrical concept plan for the site.

mment.

] Infrastructure improvements would be needed but very interesting o look at closer.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member fications or design validation.

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment. mment.

Building Name	Est. Annual Production (kWh)	% of Building or Campus Electric Consumption	Payback Year	ROM Installed Cost (\$)	Est. Annual Energy Savings (\$)	Estimated Total Cost of Ownership (\$)	Qualitative Structural Assessment (consultant)	Qualitative Electrical Assessment (consultant)	POS Team	Notes
SBM A-1 Admin	99,300	(99,300 kWh / 114,292 kWh * 100) = 86.8 %	15	\$269,700	\$10,834	\$198,200	Good for solar, minimal roof penetrations required	Appears to be space available in electrical room	Environmental (Jacob/Cam/Jessica)	[Jacob] 2005 (1 [Jessica will hap prioritie know th other bu battery (EPA).
									Environmental (David/Lucian)	[Lucian this bui assumi that wo
									Planning (Paul)	[Paul] C conjune improve dead lo
									Real Estate (Trevor)	•
									Facilities (Mark/Simon)	No ado
									Structural Engineering (Perry)	[Perry] weight. modific
									Electrical Engineering (Kemeria)	Consid potenti storage conside

b] Roof has not been replaced since building was constructed in (19 years old).

ca] Seems like a good candidate when the roof is replaced, if that appen soon anyway, I would not include it as one of the top 3 ties, but certainly as one to include in the CIP regardless. Need to the building energy use- if this supports the whole building and buildings on site, then would be more of a priority or could use ry storage element for resilience. 43.4 metric tons CO2e per year

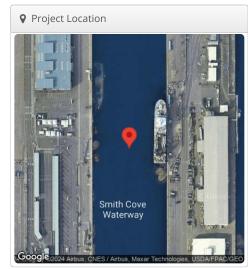
n] No forecasted constraint for the electrical infrastructure serving uilding (Substation #6). Currently at ~28% utilization and even ning the addition of 24 EV chargers by 2040 (as modeled in SWCES), rould bring the substation to ~82% utilization.

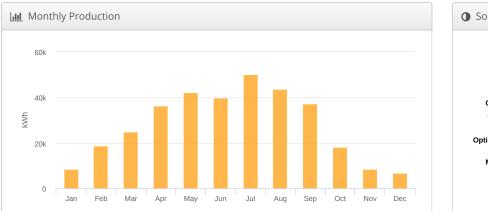
Concur with other comments that this project should be done in nction with roofing replacement and any needed roof vements the structural engineer identifies to support the additional load of the arrays.

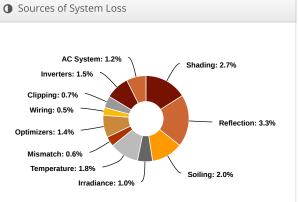
- I need to understand the expected remaining life of the existing roof surface I will find that out if this project isn't already collecting that information.
- There's relatively easy roof access with generous project laydown/staging area (with proper planning).
- Given that SBM is on SCL's Large General Service rate schedule, I would be interested in any further justification a solar system could give to installing a battery bank/reserve system. The benefit would not just be cost savings from storing lower-cost overnight power but would enable better electrical
- independence from the urban grid, as well as the rest of the property, during events such as utility power outages or even a natural disaster. The facility, while not a high-critical-need asset, is fed like the rest of the Ballard shoreline from lines running along the north side of the Locks passageway, making it somewhat isolated and susceptible.
- For bonus "example-setting" optics, an installation here would be highly visible to a constant stream of public visitors to the marina and road traffic along Seaview Ave to and from Golden Gardens.

dditional comment.

] Unsure if original design/construction allowed for additional panel t. Impacts could be gravity and lateral structural member fications or design validation.

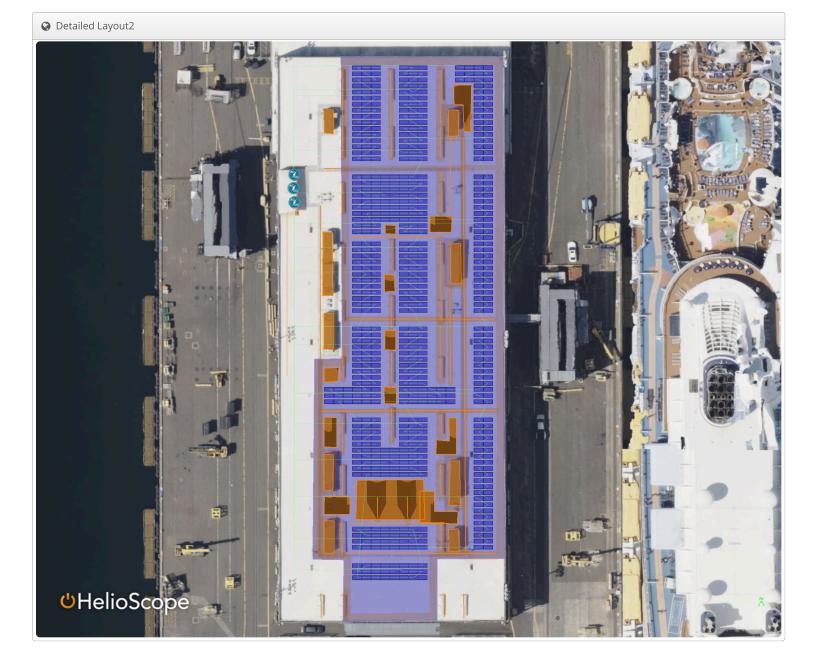

der and evaluate the overall site-specific improvements for tial solar generation, associated layout, system sizing, battery ge device plans, and microgrid prospects. These efforts must also der the capacity and lifespan of existing equipment.


Appendix C Terminal 91 – Smith Cove Cruise Terminal Documents


Smith Cove Terminal Update Final POS Solar - Pier 91, Smith Cove park

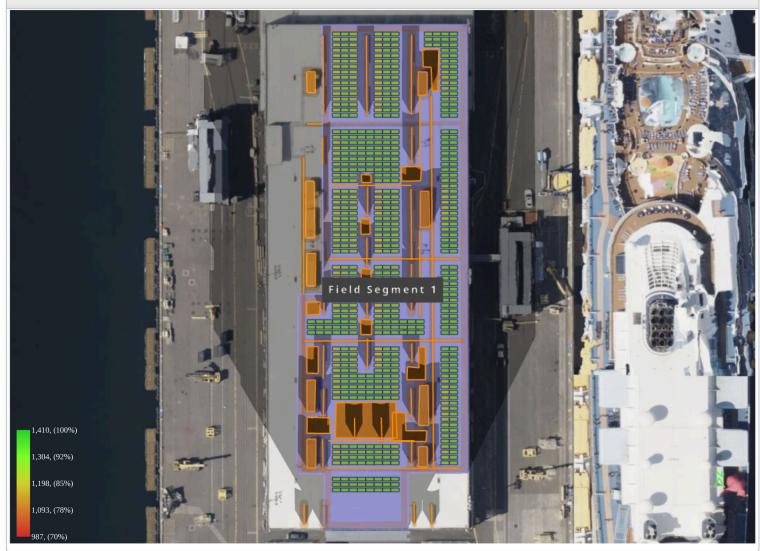
⊮ Report						
Project Name	POS Solar - Pier 91					
Project Address	Smith Cove park					
Prepared By Sazan Group ses-marketing@sazan.com						
$\sum \overset{\ddot{A}}{\underset{G}{}{}{}{}{}{}{$	ZÄN roup					

JIII System Metrics						
Design	Smith Cove Terminal Update Final					
Module DC Nameplate	303.8 kW					
Inverter AC Nameplate	240.0 kW Load Ratio: 1.27					
Annual Production	334.5 MWh					
Performance Ratio	84.3%					
kWh/kWp	1,100.9					
Weather Dataset	TMY, SEATTLE BOEING FIELD [ISIS], NSRDB (tmy3, II)					
Simulator Version	7292ed3515-fa412b5027- 77e944f598-0b5a9a1255					


UHelioScope

	Description	Output	% Delta			
	Annual Global Horizontal Irradiance	1,212.3				
	POA Irradiance	1,305.7	7.7%			
Irradiance	Shaded Irradiance	1,270.5	-2.7%			
(kWh/m ²)	Irradiance after Reflection	1,228.4	-3.3%			
	Irradiance after Soiling	1,203.8	-2.0%			
	Total Collector Irradiance	1,203.8	0.0%			
	Nameplate	365,584.7				
	Output at Irradiance Levels	362,066.8	-1.0%			
	Output at Cell Temperature Derate	355,378.5	-1.8%			
_	Output After Mismatch	353,168.8	-0.6%			
Energy (kWh)	Optimizer Output	348,167.8	-1.4%			
(((())))	Optimal DC Output	346,430.3	-0.5%			
	Constrained DC Output	343,855.1	-0.7%			
	Inverter Output	338,668.5	-1.5%			
	Energy to Grid	334,450.5	-1.2%			
Temperature I	Metrics					
	Avg. Operating Ambient Temp		14.0 °C			
Avg. Operating Cell Temp						
Simulation Me	trics					
	O	perating Hours	4265			
Solved Hours						

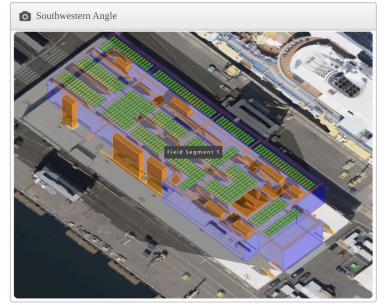
Condition Set														
Description	Con	Condition Set 2 Ground												
Weather Dataset	TMY	TMY, SEATTLE BOEING FIELD [ISIS], NSRDB (tmy3, II)												
Solar Angle Location	Mete	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sand	Sandia Model												
	Racl	Rack Type a b Temperature Delta												
Temperature Model	Fixe	d Tilt			-3.	56	-0.	.075		3°	С			
Parameters	Flush Mount				-2.	81	-0.	.0455	5	0°	0°C			
	East-West				-3.	56 -0		0.075		3°C				
	Carport -3.56 -0.075 3°C													
Soiling (%)	J	F	Μ	A	A	М	J	J		A	S	0	Ν	D
	2	2	2	2	2	2	2	2		2	2	2	2	2
Irradiation Variance	5%													
Cell Temperature Spread	4° C													
Module Binning Range	-2.59	% to 2	2.5%											
AC System Derate	0.50	%												
Module	Module Uploaded By Characterization													
Characterizations		490 ⊢ ab So	IN (20 lar)	22)		Hel	oSc	Scope Spec Sh Charact				eet erization, PAN		
C	Dev	ice						Uplo	bade	ed B	y c	harac	teriza	tion
Component Characterizations	P11	00 (S	olarEd	ge))			Heli	oSc	ope	Ν	Лfg Sp	ec Sh	eet
	SE8	OKUS	(2022) (S	ola	rEdge	e)	Heli	oSc	ope	S	spec S	heet	


🖨 Components							
Component	Name	Count					
Inverters	SE80KUS (2022) (SolarEdge)	3 (240.0 kW)					
AC Panels	3 input AC Panel	1					
AC Home Runs	6 AWG (Copper)	3 (261.1 ft)					
AC Home Runs	3/0 AWG (Copper)	1 (552.5 ft)					
Strings	10 AWG (Copper)	20 (8,770.6 ft)					
Optimizers	P1100 (SolarEdge)	320 (352.0 kW)					
Module	Silfab Solar, SIL-490 HN (2022) (490W)	620 (303.8 kW)					

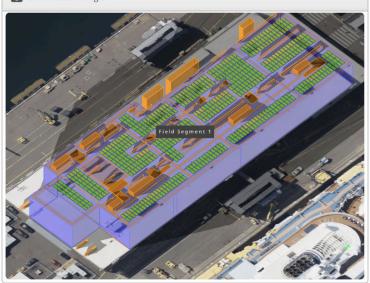
🔒 Wiring	Zones									
Description Combiner Poles String Size Stringing Strategy										
Wiring Zone		-		13-31		Along R	acking			
III Field Se	egments									
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Powe	
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	Module: 10°	Module: 180°	1.5 ft	1x1	620	620	303.8 kW	

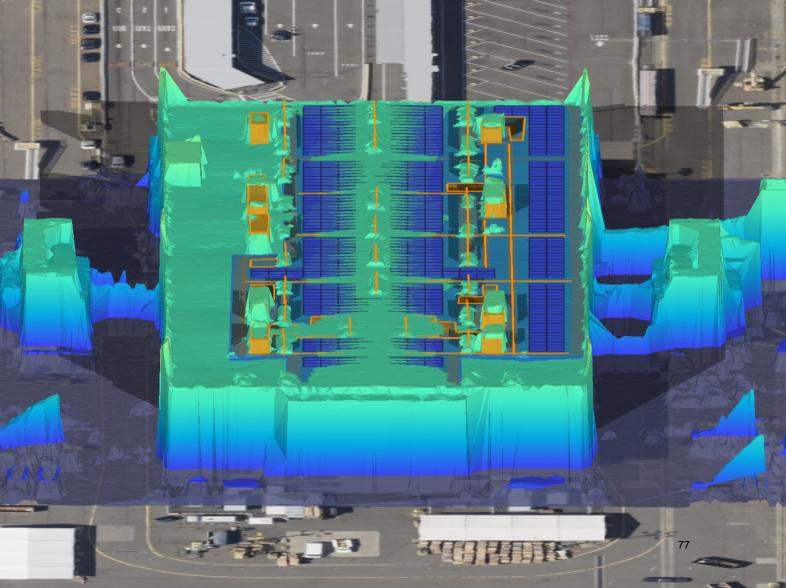
Smith Cove Terminal Update Final POS Solar - Pier 91, Smith Cove park

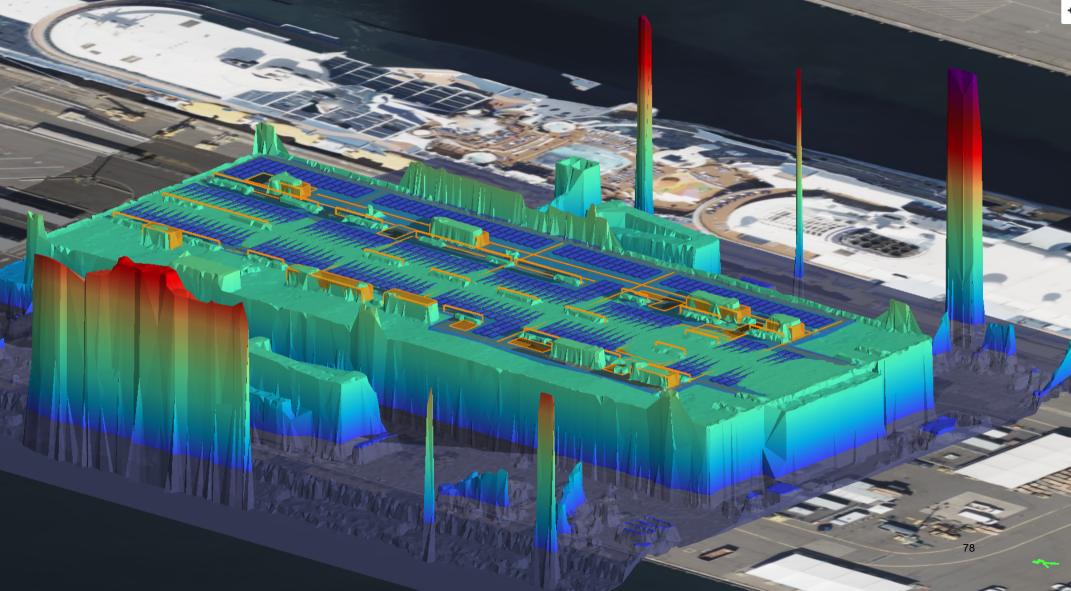
Shading Heatmap

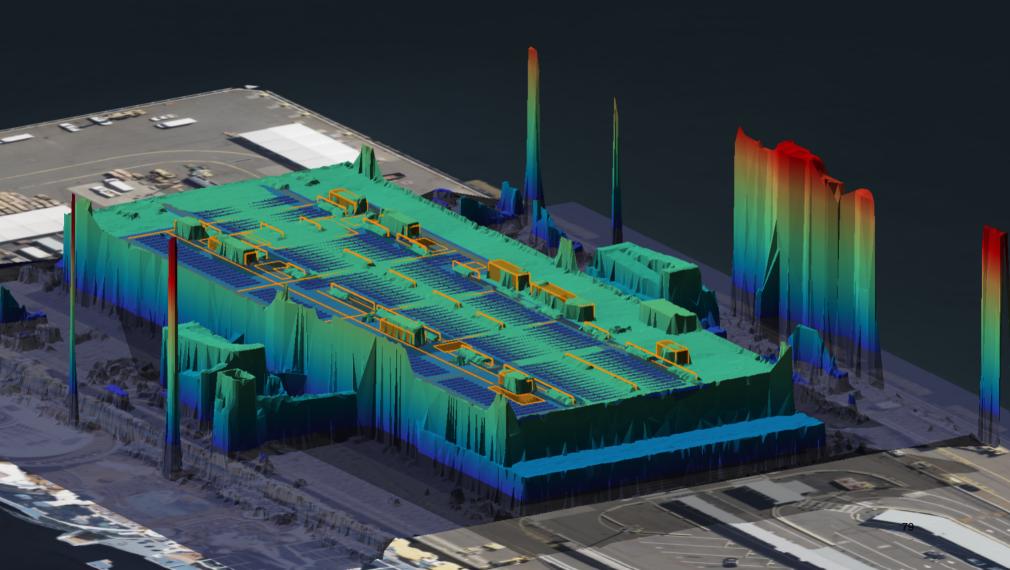

Description	Tilt	Azimuth	Modules	Nameplate	Shaded Irradiance	AC Energy	TOF^2	Solar Access	Avg TSRF ²
Field Segment 1	Module: 10.0°	Module: 180.0°	620	303.8 kWp	1,270.5kWh/m ²	$334.5~\mathrm{MWh}^1$	92.6%	97.3%	90.1%
Totals, weighted by	kWp		620	303.8 kWp	1,270.5kWh/m ²	334.5 MWh	92.6%	97.3%	90.1%
						² based on location Opt	imal POA Irradia	¹ approximate, varies bance of 1,409.9kWh/m ² at	ased on inverter performa 35.6° tilt and 186.5° azin

Solar Access by Month												
Description	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
Field Segment 1	94%	96%	98%	98%	98%	98%	98%	98%	97%	97%	94%	89%
Solar Access, weighted by kWp	93.6%	95.7%	97.6%	97.8%	98.1%	98.1%	98.0%	97.9%	97.2%	96.8%	94.4%	89.4%
AC Power (kWh)	8,618.9	18,830.6	24,784.1	36,257.6	42,040.8	39,673.2	49,965.8	43,503.1	37,230.1	18,274.5	8,468.8	6,802.9

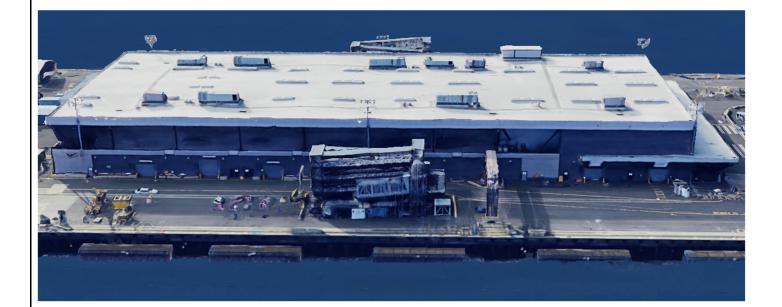

UHelioScope


Shading Report produced by Sazan Group





Southeastern Angle



5] TKDA

Port of Seattle Solar Feasibility Assessment: Smith Cove Cruise Terminal

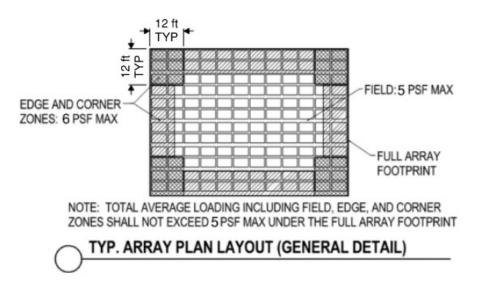
2001 W Garfield St, Seattle, WA 98119

TKDA Project No. 24026

December 20th, 2024

Structural Calculation Index

Calculation Section	Page No.
Structural Assessment Letter	1
Vertical Gravity Weight Verification	3
Seismic Weight Verification	4
Design Load Verification	5
Snow Calculation for Drift Check	6
Standard Load Table for K Joist	12
Load Table for Deck Capacity	14



Jack Newman Säzän Consulting Services 600 Stewart Street, Suite 1400 Seattle, WA 98101

Re: Port of Seattle - Solar Feasibility Assessment Smith Cove Cruise Terminal

TKDA has performed a structural assessment of the Smith Cove Cruise Terminal located in Seattle, WA to determine its ability to support the proposed ballasted rooftop PV array system including modules, racking, and associated equipment. This assessment is based on the asbuilt structural and architectural drawings provided by the Port of Seattle. The original 2007 drawings are titled "Terminal 91 Cruise Ship Terminal" with KPFF as the Structural Engineer of Record (SEOR). The Smith Cove Cruise Terminal is a 2-story steel structure. The roof system is composed of a TPO membrane, gypsum, rigid insulation, and steel roof deck. Open web steel joists carry roof loads to W- shaped girders. The lateral system of the building utilizes vertical bracing.

The results of our analysis show that the existing framing is sufficient to carry proposed loading for the planned PV array as detailed in layout below.

Section 503.3 of the 2021 Washington State IEBC states that any building alterations which cause an increase in design dead, live, or snow load of less than 5 percent do not require strengthening or modification of the affected members. The design snow load value shown on the general notes of the original building drawings is higher than the code prescribed snow load required at the roof. The results of our analysis show that the existing framing is sufficient to carry the increased loading due to the proposed ballasted rooftop PV array without additional strengthening. See calculations enclosed.

Per section 503.4 of the 2021 Washington State IEBC, building alterations resulting in a lateral load increase of less than 10 percent do not require strengthening or modification of the affected members. The total array weight is less than the maximum allowable array weight based on 10 percent of the original seismic weight tributary to the roof diagram thus no strengthening nor modifications are needed to the roof framing members. See calculations enclosed.

In summary, the existing building structure is adequate to support the proposed ballasted rooftop PV array given its average weight of 5 psf underneath the footprint of the array. Please contact TKDA with any further questions.

Sincerely, TKDA Engineers

Daniel Munn, PE, SE Vice President, Northwest Region

Project Name: Project Location: Building: Date: Port of Seattle Solar Feasibility Study Seattle, WA Smith Cruise Terminal December 20th, 2024

Governing Building Codes:

2021 Washington State IEBC ASCE 7-16

Vertical Gravity Weight Verification

Original Design Loads Per Design Drawings:

Load Case	<u>Magnitude</u>	<u>Comments</u>
Dead Load	20 psf	See Load Verification calculations
Snow Load	25 psf	WABO, UBC 97

IEBC § 503.3:

"Any existing gravity load-carrying structural element for which an alteration causes an increase in design dead, live or snow load, including snow drift effects, of more than 5 percent shall be replaced or altered as needed to carry the gravity loads required by the International Building Code for new structures. Any existing gravity load-carrying structural element whose gravity load-carrying capacity is decreased as part of the alteration shall be shown to have the capacity to resist the applicable design dead, live and snow loads including snow drift effects required by the International Building Code for new structures by the International Building Code for new structures."

Actual Loads:

Load Case	Magnitude	<u>Comments</u>
Dead Load	20 psf	See Load Verification calculations
Snow Load	Varies d.t.drift considerations	ASCE 7-16, See calculations
Actual Array Weight =	5 psf	

Actual Snow Load + Actual Array Weight < Original Design Snow Load

Conclusions:

The design snow load value as shown on SB1.00 of the original building drawings is higher than the actual snow load present at the existing roof. The results of the analysis show that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening. See calculations enclosed.

Project Name: Project Location: Building: Date: Port of Seattle Solar Feasibility Seattle, WA Smith Cruise Terminal December 20, 2024

Governing Building Codes:

2021 Washington State IEBC ASCE 7-16

Seismic Weight Verification

Original Seismic Weight Calculation:

Item Description	Value	<u>Comments</u>
Roof Area =	88110 sf	Total roof area, determined from drawings
Roof DL =	20 psf	See Load Verification calculations
Weight Trib to Roof =	1762 kips	

IEBC § 503.4:

"Any existing lateral load-carrying structural element whose demand-capacity ratio with the alteration considered is not more than 10 percent greater than its demand-capacity ratio with the alteration ignored shall be permitted to remain unaltered."

Allowable Weight Increase Calculation:

Item Description	Value	<u>Comments</u>
10% Increase Per IEBC § 503.4 =	176.3 kips	Maximum array weight
Typ. Weight of Array =	5 psf	Under footprint
Actual Array Weight	103.9 kips	
Actual Array Area	20775 sf	Determined from layouts
Max Allowable Array Area =	35260 sf	

Conclusions:

The new solar array weight of 103.9 kips is less than the maximum allowable array weight of 176.3 kips based on a 10% increase per IEBC § 503.4. The results of the analysis shows that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening.

Design Loads Smith Cove Cruise Terminal

Trib Area of Roof Gird	ders $A_{trib} :=$	45 ft •45	$ft = (2.03 \cdot 10)$	$(3^3) ft^2$
Joist spacing	$s_{max} \coloneqq$		`	
Typical Roof Loads				
Roof Dead	see below			
Roof Live Load per GSNs	<i>RLL</i> := 20 <i>psf</i>			
Roof Snow Load per GSNs	<i>SL</i> := 20 <i>psf</i>			
Confirmation of Roof	Dead Loads			
$DL_{deck} \coloneqq 2.6$ ps	f		1 1/2", 18	3 GA Roof Deck
$DL_{insul} := (4 in)$	$0.75 \frac{psf}{in} = 3 ps$	f		R-21 total required
	in			R-4 for every 3/4"
$DL_{membrane} \coloneqq 1$	psf	TPO		
$DL_{gyp} \coloneqq 2.5~psj$	۶/8" tł	nick gyp un	derlay	
13.4				
$DL_{joist} \coloneqq \frac{\frac{13.4}{2}}{s_{ma}}$	-119 mof		wt of 30K9,	typical joist
130 pl	$5 \cdot 45 \ ft \cdot 2 + 31 \ pl$	f • 45 <i>ft</i> • 2	- 10	
$DL_{stl} \coloneqq$	A_{trib}		=7.16 psj	
$SDL \coloneqq 2 psf$	MEP			
$DL_{roof} \coloneqq DL_{deck}$	$_{c} + DL_{insul} + DL_{mes}$	$_{mbrane} + DL$	$_{gyp}$ + DL_{joist} -	+ <i>DL_{stl}</i> =17.37 <i>psf</i>
Compare to val	ues			
found in joist a deck tables		$_{lc} \coloneqq \operatorname{Ceil} \left(L \right)$	$L_{roof} + SDL$,	1 psf angle = 20 psf

SNOW CALCULATIONS per ASCE 7-16

SMITH TERMINAL, CASE 1

Roof Geometry		
Upper Roof Length, I _u (ft):	9	Surcharge Load
Lower Roof Length, I _I (ft):	34.75	
Roof Height Difference, h (ft):	9	h _d P _d P _d Belanced Snow Load
Separation Distance, s (ft):	0	
Clear Roof Height, h _c (ft):	7.80	∢
Slope Rise	1	Figure 7.7-2. Configuration of snowdrifts on lower roofs.
Actual Slope, degrees	4.764	
Balanced Snow		
Ground Snow Load, p _g (psf):	20	
Exposure Factor, C _e (Table 7-2):	0.9	
Thermal Factor, C _t (Table 7-3):	1.0	
Importance Factor, I (Table 7-4):	1.0	
Slope Factor, C _s (=1.0 if Flat):	1.0	
Minimum Flat Snow Load, pf (psf):	20	= p _g *l or 20*l
Sloped Roof Snow Load, p _s (psf):	20	= $0.7^{*}C_{e}^{*}C_{t}^{*}C_{s}^{*}p_{g}$ or p_{fmin}
Snow Density, γ (pcf):	16.6	$= 0.13 * p_g + 14 \le 30$
Balanced Snow Height, h _b (ft):	1.20	$= p_f / \gamma$
Adjacent Structure Factor, asf	1.00	= (20-s) / 20
Leeward Drift		Drift Size

$h_d =$	$\left(0.43 \cdot \sqrt[3]{l_u} \cdot \sqrt[4]{p}\right)$	$\overline{p_g + 10} - 1.5 ight) \cdot \sqrt{I_s}$	\cdot asf
Drift Heig	ht, h _d (ft):	/	0.59

Windward Drift

$h_d = 0.75 \cdot$	$\left(0.43 \cdot \sqrt[3]{l_l} \cdot \sqrt[4]{p_g + 10} - 1.5\right)$	$5 \left(\cdot \sqrt{I_s} \cdot asf \right)$
Drift Height, h _d	(ft):	1.34

2		
Design Height, h _d (ft):	1.34	
But not greater than h_c (ft):	1.34	
Drift Width, w (ft):		
If $h_d \le h_{c,} 4 * h_d$	5.35	
If $h_d > h_c$, 4 * h_d^2 / h_c	0.92	
But not greater than 8*h _c :	62.36	
w (ft):	5.35	
Maximum Surcharge Load, p _d (psf):	22.21	= h_d / γ

Sloped Roof Results			
Sloped Roof Snow Load, p _s (psf):	20.0	psf	
Balanced Snow Height, h _b (ft):	1.2	ft	

Drift Results - Does not apply				
Drift Height, h _d	1.34	ft		
Drift Width, w	5.35	ft		
Maximum Surcharge Load, p _d	22.21	psf		

Page 1 of 1

	PROJECT	SAZAN	BY: CBC	SHEET:
		SMITH TERMINAL	CHKD:	PROJECT NO:
J INDA	TITLE	SMITH TERMINAL, CASE 1	DATE:	24026
		SNOW CALCULATION	12/20/24	PAGE:

SNOW CALCULATIONS per ASCE 7-16

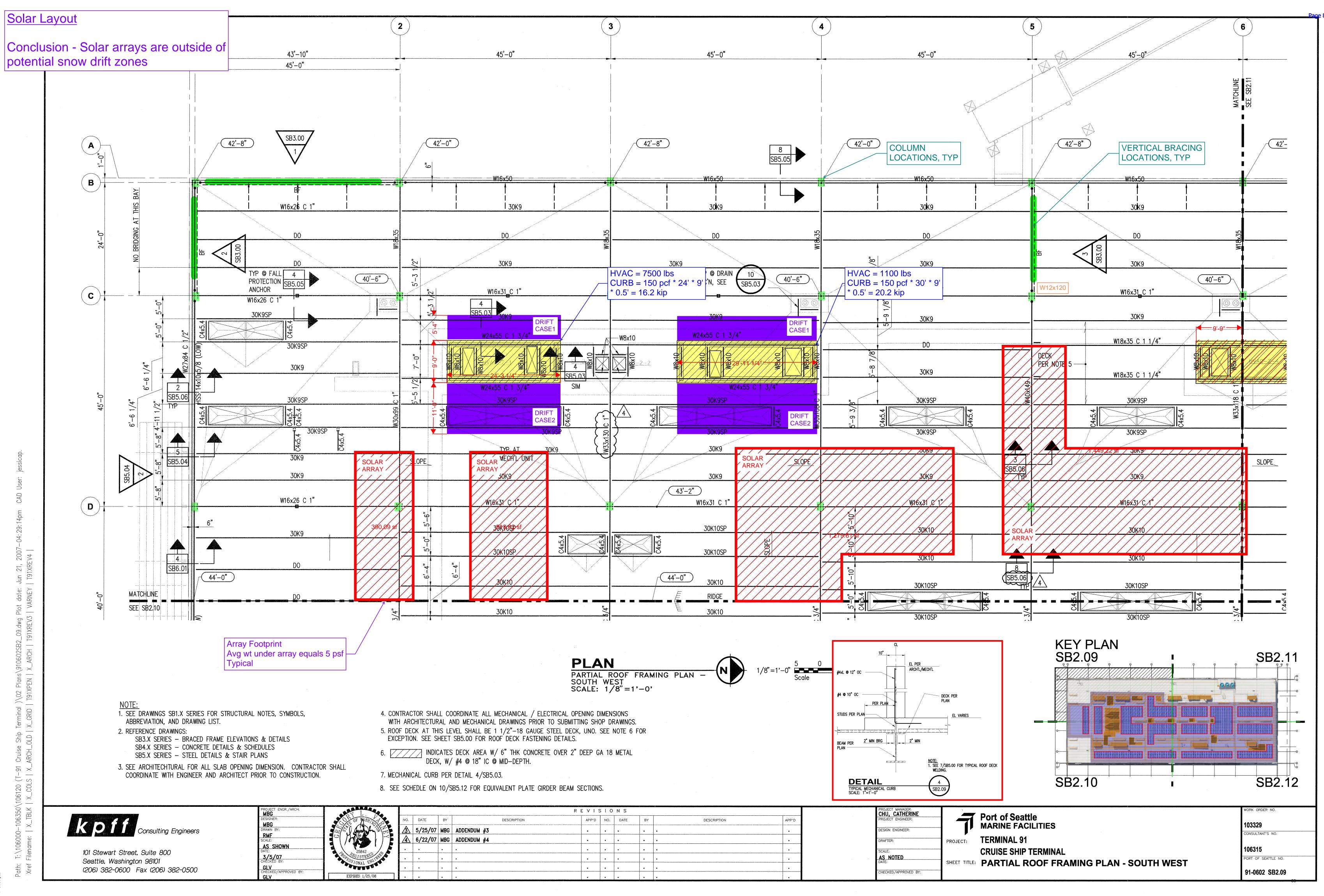
SMITH TERMINAL, CASE 2

Roof GeometryUpper Roof Length, I _u (ft):Lower Roof Length, I _l (ft):Roof Height Difference, h (ft):	9 135.25 9	Lu Surcharge Load Due to Drifting h _a p _g
Separation Distance, s (ft): Clear Roof Height, h_c (ft):	0 7.80	hb t Belanced Snow Load
Slope Rise	1	Figure 7.7-2. Configuration of snowdrifts on lower roofs.
Actual Slope, degrees <u>Balanced Snow</u>	4.764	
Ground Snow Load, p _g (psf):	20	
Exposure Factor, C _e (Table 7-2):	0.9	
Thermal Factor, C _t (Table 7-3):	1.0	
Importance Factor, I (Table 7-4): Slope Factor, C_s (=1.0 if Flat):	1.0 1.0	
Minimum Flat Snow Load, pf (psf):	20	$= p_g * l \text{ or } 20* l$
Sloped Roof Snow Load, p _s (psf):	20	= $0.7^*C_e *C_t * l*C_s * p_g$ or p_{fmin}
Snow Density, γ (pcf):	16.6	$= 0.13 * p_g + 14 \le 30$
Balanced Snow Height, h _b (ft):	1.20	$= p_f / \gamma$
Adjacent Structure Factor, asf	1.00	= (20-s) / 20
Leeward Drift		Drift Size

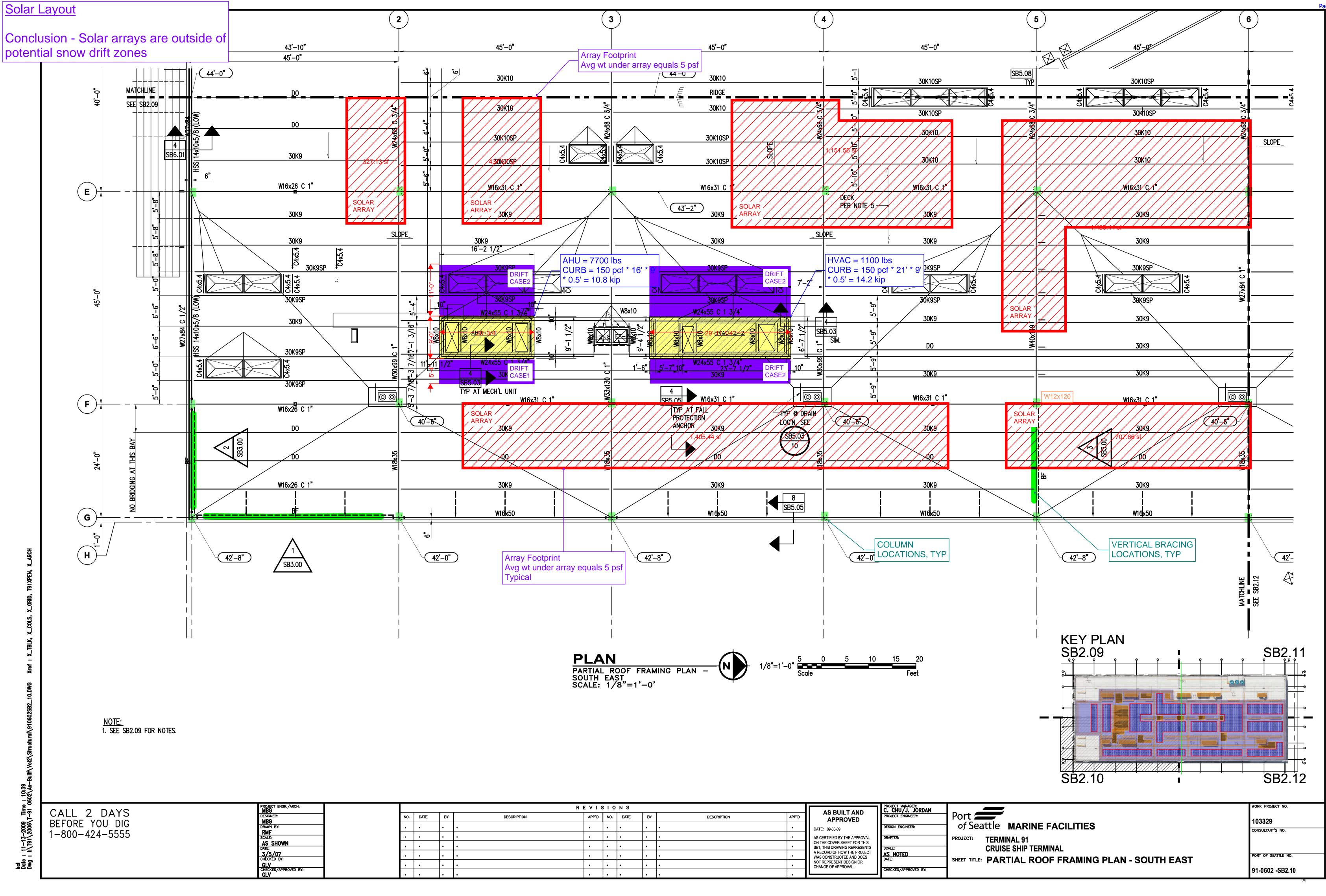
$h_d =$	$\left(0.43 \cdot \sqrt[3]{l_u} \cdot \sqrt[4]{p}\right)$	$\overline{p_g + 10} - 1.5 ight) \cdot \sqrt{I_s}$	\cdot asf
Drift Heig	ht, h _d (ft):	/	0.59

Windward Drift

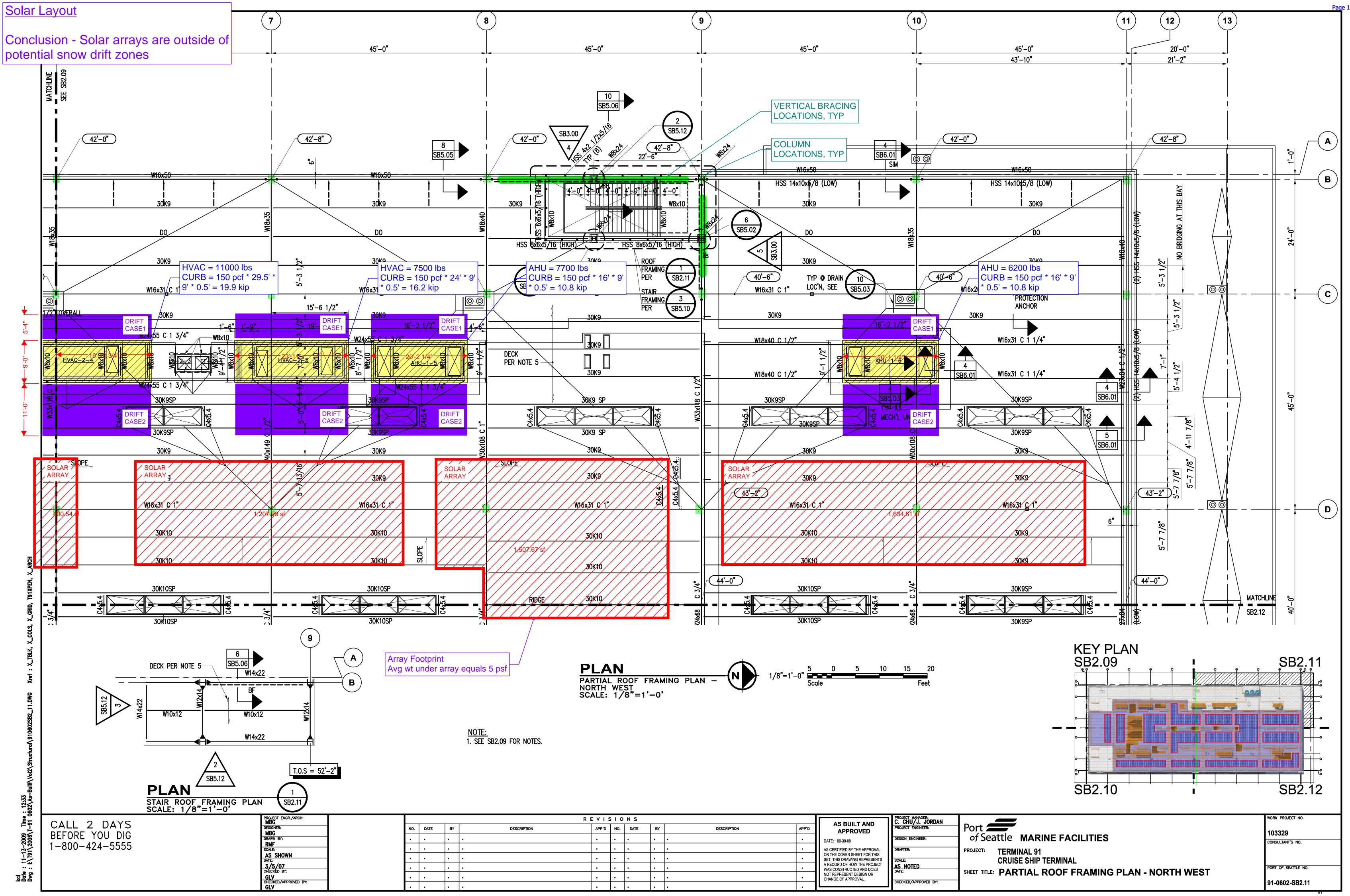
$h_d = 0.75 \cdot$	$\left(0.43 \cdot \sqrt[3]{l_l} \cdot \sqrt[4]{p_g + 10} - 1.5\right)$	$\left(\right) \cdot \sqrt{I_s} \cdot asf$
Drift Height, h _d	(ft):	2.75


	DIIICOIZC		
Design	Height, h _d (ft):	2.75	
But r	not greater than h _c (ft):	2.75	
Drift W	idth, w (ft):		
lf h _d	≤ h _{c,} 4 * h _d	11.00	
lf h _d	> h _c , 4 * h _d ² / h _c	3.88	
But r	not greater than 8*h _c :	62.36	
w (ft	:	11.00	
Maximu	ım Surcharge Load, p _d (psf):	45.64	$= h_d / \gamma$

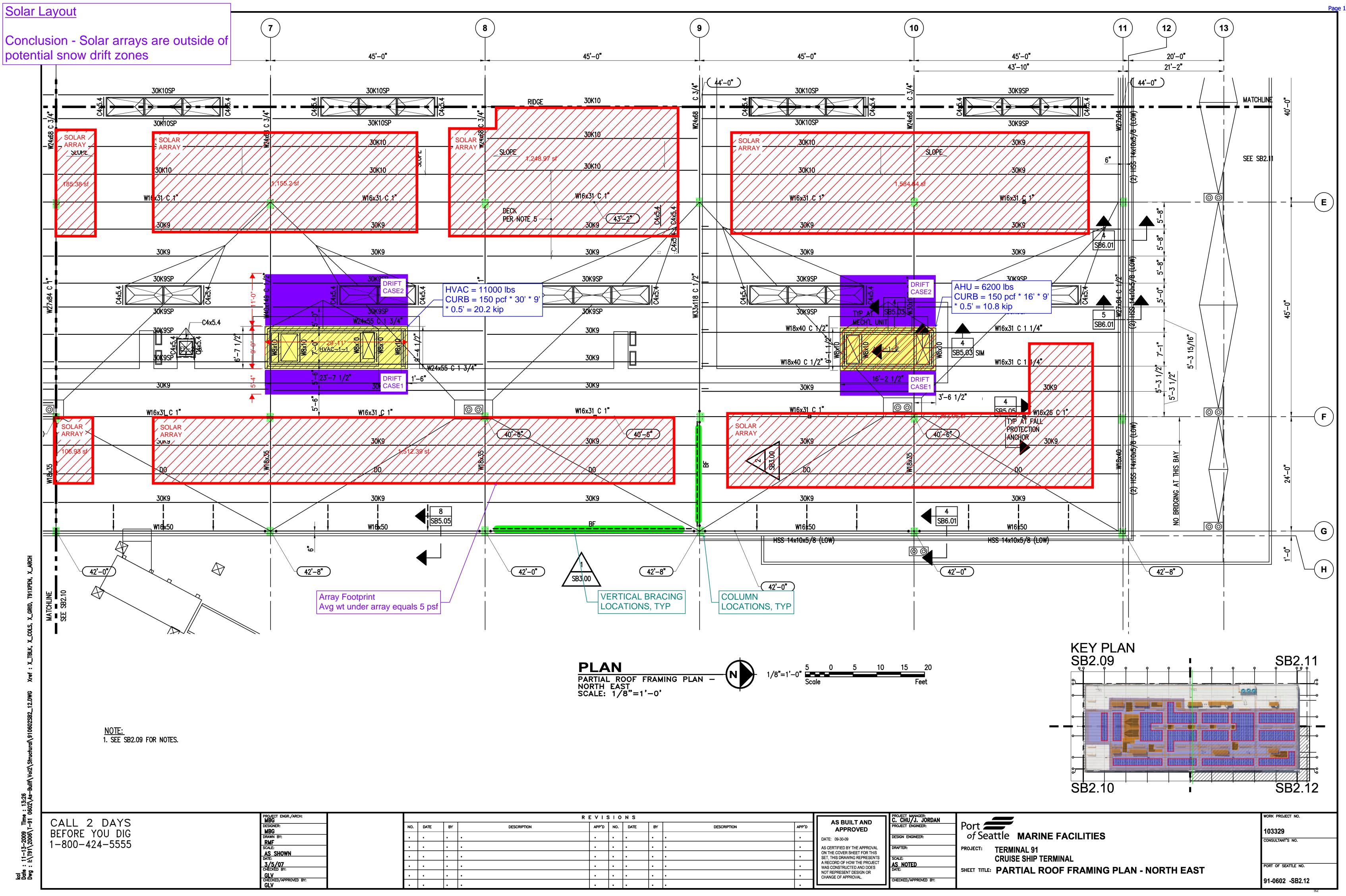
Sloped Roof Results			
Sloped Roof Snow Load, p _s (psf):	20.0	psf	
Balanced Snow Height, h _b (ft):	1.2	ft	


Drift Results - Does	s not apply	
Drift Height, h _d	2.75	ft
Drift Width, w	11.00	ft
Maximum Surcharge Load, p _d	45.64	psf

Page 1 of 1


	PROJECT	SAZAN SMITH TERMINAL	BY: CBC CHKD:	SHEET: PROJECT NO:
TKDA	TITLE	SMITH TERMINAL, CASE 2	DM DATE:	24026
		SNOW CALCULATION	12/20/24	PAGE:

000-106350\106120 (T-91 Cruise Ship Terminal)\02 Plans\910602SB2_09.dwg, 6/21/2007 4:29:13 PM, jessicap, 0.nc3



RI	EVIS	5 1 0	NS				AS BUILT AND	PROJECT MANAGER: C. CHU/J. JORDAN
DESCRIPTION	APP'D	NO.	DATE	BY	DESCRIPTION	APP'D		PROJECT ENGINEER:
•	•	•	•	•	•	•		DESIGN ENGINEER:
•	•	•	•	•	•	•		DRAFTER:
•	•	•	•	•	•	•	ON THE COVER SHEET FOR THIS SET, THIS DRAWING REPRESENTS	SCALE:
•	•	•	•	•	•	•	A RECORD OF HOW THE PROJECT WAS CONSTRUCTED AND DOES	AS NOTED
•	•	•	•	•	•	•	NOT REPRESENT DESIGN OR CHANGE OF APPROVAL	
•	•	•	•	•	•	•		CHECKED/APPROVED BY:

R	EVIS	5 1 0	NS				AS BUILT AND	PROJECT MANAGER: C. CHU/J. JORDAN
DESCRIPTION	APP'D	NO.	DATE	BY	DESCRIPTION	APP'D		PROJECT ENGINEER:
•	•	•	•	•	•	•		DESIGN ENGINEER:
•	•	•	•	•	•	•	AS CERTIFIED BY THE APPROVAL	DRAFTER:
•	•	•	•	•	•	•	ON THE COVER SHEET FOR THIS SET, THIS DRAWING REPRESENTS	SCALE:
•	•	•	•	•	•	•		AS NOTED
•	•	•	•	•	•	•	NOT REPRESENT DESIGN OR CHANGE OF APPROVAL	
•	•	•	•	•	•	•		CHECKED/APPROVED BY:

Page 10

RI	EVIS	5 0	NS				AS BUILT AND	PROJECT MANAGER: C. CHU/J. JORDAN
DESCRIPTION	APP'D	NO.	DATE	BY	DESCRIPTION	APP'D	AS BOILT AND	PROJECT ENGINEER:
•	•	•	•	•	•	•	DATE: 09-30-09	DESIGN ENGINEER:
•	•	•	•	•	•	•	AS CERTIFIED BY THE APPROVAL	DRAFTER:
•	•	•	•	•	•	•	ON THE COVER SHEET FOR THIS SET, THIS DRAWING REPRESENTS	SCALE:
•	•	•	•	•	•	•	A RECORD OF HOW THE PROJECT WAS CONSTRUCTED AND DOES	AS NOTED DATE:
•	•	•	•	•	•	•	NOT REPRESENT DESIGN OR CHANGE OF APPROVAL.	
•	•	•	•	•	•	•		CHECKED/APPROVED BY:

STANDARD ASD LOAD TABLE OPEN WEB STEEL JOISTS, K-SERIES

Historical K series joist table

Page 12

Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute November 4, 1985 Revised to November 10, 2003 - Effective March 01, 2005

The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD K-Series** Steel Joists. The weight of DEAD loads, including the joists, must be deducted to determine the LIVE load-carrying capacities of the joists. Sloped parallel-chord joists shall use span as defined by the length along the slope.

The figures shown in **RED** in this load table are the nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in **RED** by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

The approximate joist weights per linear foot shown in these tables do <u>not</u> include accessories.

The approximate moment of inertia of the joist, in inches⁴ is;

 I_j = 26.767(W_{LL})(L^3)(10^{-6}), where W_{LL} = **RED** figure in the Load Table and L = (Span - 0.33) in feet.

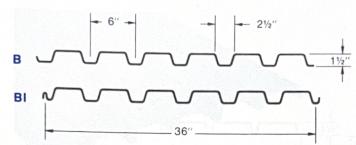
For the proper handling of concentrated and/or varying loads, see Section 6.1 in the Code of Standard Practice for Steel Joists and Joist Girders.

Where the joist span exceeds the unshaded area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at the chords and intersections.

		Ва	S Ised on a							JOISTS, I Pounds			(plf)			
Joist Designation	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
(lbs./ft.) Span (ft.)																
8	550															
	550															
9	550 550															
10	550 480	550 550														
11	532 377	550 542														
12	444 288	550 455	550 550	550 550	550 550											
13	377 225	479 363	550 510	550 510	550 510											
14	324 179	412 289	500 425	550 463	550 463	550 550	550 550	550 550	550 550							
15	281 145	358 234	434	543 428	550 434	511 475	550 507	550 507	550 507							
16	246 119	313 192	380 282	476	550 396	448 390	550 467	550 467	550 467	550 550	550 550	550 550	550 550	550 550	550 550	550 550
17	110	277 159	336 234	420 291	550 366	395 324	495 404	550 443	550 443	512 488	550 526	550 526	550 526	550 526	550 526	550 526
18		246 134	299 197	374 245	507 317	352 272	441 339	530 397	550 408	456 409	508 456	550 490	550 490	550 490	550 490	550 490
19		221 113	268 167	335 207	454 269	315 230	395 287	475 336	550 383	408 347	455 386	547 452	550 455	550 455	550 455	550 455
20		199 97	241 142	302 177	409 230	284 197	356 246	428 287	525 347	368 297	410 330	493 386	550 426	550 426	550 426	550 426
21			218 123	273 153	370 198	257 170	322 212	388 248	475 299	333 255	371 285	447 333	503 373	548 405	550 406	550 406
22			199 106	249 132	337 172	234 147	293 184	353 215	432 259	303 222	337 247	406 289	458 323	498 351	550 385	550 385
23			181 93	227 116	308 150	214 128	268 160	322 188	395 226	277 194	308 216	371 252	418 282	455 307	507 339	550 363
24			166 81	208 101	282 132	196 113	245 141	295 165	362 199	254 170	283 189	340 221	384 248	418 269	465 298	550 346
25						180 100	226 124	272 145	334 175	234 150	260 167	313 195	353 219	384 238	428 263	514 311
26						166 88	209 110	251 129	308 156	216 133	240 148	289 173	326 194	355 211	395 233	474 276
27						154 79	193 98	233 115	285 139	200 119	223 132	268 155	302 173	329 188	366 208	439 246
28						143 70	180 88	216 103	265 124	186 106	207 118	249 138	281 155	306 168	340 186	408 220
29										173 95	193 106	232 124	261 139	285 151	317 167	380 198
30										161 86	180 96	216 112	244 126	266 137	296 151	355 178
31										151 78	168 87	203 101	228 114	249 124	277 137	332 161
32										142 71	158 79	190 92	214 103	233 112	259 124	311 147

_	
Λ	

		Based o				OPEN WEI		DISTS, K-SE ounds per		t (plf)		
Joist Designation	28K6	28K7	28K8	28K9	28K10	28K12	30K7	30K8	30K9	30K10	30K11	30K12
Depth (In.)	28	28	28	28	28	28	30	30	30	30	30	30
Approx. Wt. (Ibs./ft.)	11.4	11.8	12.7	13.0	14.3	17.1	12.3	13.2	13.4	15.0	16.4	17.6
Span (ft.)												
28	548	550	550	550	550	550						
20	541	543	543	543	543	543						
29	511 486	550 522	550 522	550 522	550 522	550 522						
30	477	531	550	550	550	550	550	550	550	550	550	550
31	439 446	486 497	500 550	500 550	500 550	500 550	543 534	543 550	543 550	543 550	543 550	543 550
	397	440	480	480	480	480	508	520	520	520	520	520
32	418 361	466 400	515 438	549 463	549 463	549 463	501 461	549 500	549 500	549 500	549 500	549 500
33	393	438	484	527	532	532	471	520	532	532	532	532
34	329 370	364 412	399 456	432 496	435 516	435 516	420 443	460 490	468 516	468 516	468 516	468 516
	300	333	364	395	410	410	384	430	441	441	441	441
35	349 275	389 305	430 333	468 361	501 389	501 389	418 351	462 384	501 415	501 415	501 415	501 415
36	330	367	406	442	487	487	395	436	475	487	487	413
37	252 312	280 348	306 384	332 418	366 474	366 474	323 373	353 413	383 449	<u>392</u> 474	392 474	392 474
57	232	257	282	305	344	344	297	325	352	374	374	374
38	296 214	329 237	364 260	396 282	461 325	461 325	354 274	391 300	426 325	461 353	461 353	461 353
39	280	313	346	376	447	449	336	371	404	449	449	449
40	198 266	219 297	240 328	260 357	306 424	308 438	253 319	277 353	300 384	333 438	333 438	333 438
40	183	203	222	241	284	291	234	256	278	438 315	315	315
41	253 170	283 189	312 206	340 224	404 263	427 277	303 217	335 238	365 258	427 300	427 300	427 300
42	241	269	200	324	384	417	289	320	348	413	417	417
43	158 230	175 257	192 284	208 309	245 367	264 407	202 276	221 305	240 332	282 394	284 407	284 407
43	147	163	204 179	194	228	252	188	206	223	263	270	270
44	220 137	245 152	271 167	295 181	350 212	398 240	263 176	291 192	317 208	376 245	398 258	398 258
45	210	234	259	282	334	389	251	278	303	359	389	389
46	128 201	142 224	156 248	169 270	198 320	229 380	164 241	179 266	195	229 344	246 380	246 380
40	120	133	146 ²⁴⁰	158	186	219	153	168	2 <mark>90</mark> 182	214	236	236
pical 30K9) Joist F	Parame	ters:				230 144	255 157	277 171	329 201	372 226	372 226
							221	244	266	315	362	365
Linkaas							135 212	148 234	160 255	188 303	215 347	216 357
$_{-} = Unknov$							127	139	150	177	202	207
elf wt = 13.4	4 plt						203 119	225 130	245 141	291 166	333 190	350 199
_ = 25 psf							195	216	235	279	320	343
st spacing	= 6'-0"						112 188	123 208	133 226	157 268	179 308	192 336
an = 45 ft	•••						106	116	126	148	169	184
an – 40 n							181 100	200 109	218 <mark>119</mark>	258 140	296 159	330 177
							174	192	209	249	285	324
etermine R	oot Dea	ad Load	d:				94 168	103 185	112 202	132 240	150 275	170 312
							89	98	106	125	142	161
_{o∟} = 303 plf	- 25 ps	f * 6 ft	= 153 r	olf			162 84	179 92	195 <mark>100</mark>	231 118	265 135	301 153
	-0 00						156	173	188	223	256	290
450	16 / 04	05	(80 151	88 167	<u>95</u> 181	112 215	128 247	145 280
_ _{max} = 153 p	oit / 6ft :	= ~ 25	pst				76	83	90	106	121	137
							146 72	161 79	175 <mark>86</mark>	208 101	239 115	271 130
ummary - E	Based o	n the id	oist car	acitv. 1	the may	kimum l	141	156	169	201	231	262
				,			69	75	81	96	109	124



ROOF

1.5 B, BI, BA, BIA

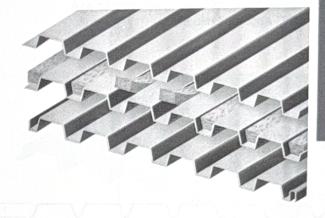
Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0 Factory Mutual Approved (No. 0C847.AM, 0G1A4.AM, and 3Y1A6.AM) ** ICBO Approved (No.3415)

SECTION PROPERTIES

E T

1

200


-

Deck Design Type Thick.	Design	Weight	(PSF)	T T	Sp	Sn	Fy
	Ptd.	Galv.	in ⁴ /ft	in ³ /ft	in ³ /ft	KSI	
B24	0.0239	1.36	1.46	0.121	0.120	0.131	60
B22	0.0295	1.68	1.78	0.169	0.186	0.192	33
B21	0.0329	1.87	1.97	0.192	0.213	0.221	33
B20	0.0358	2.04	2.14	0.212	0.234	0.247	33
B19	0.0418	2.39	2.49	0.253	0.277	0.289	33
B18	0.0474	2.72	2.82	0.292	0.318	0.327	33
B16	0.0598	3.44	3.54	0.373	0.408	0.411	33

ACOUSTICAL INFORMATION

Deck	Absorption Coefficient					Noise Reduction	
Туре	125	250	500	1000	2000	4000	Coefficient*
1.5BA, 1.5BIA		.20	.63	1.04	.66	.36	.65

* Source: Riverbank Acoustical Laboratories — RAL™ A94–185. Test was conducted with 1.5 inches of 1.65 pcf fiberglass insulation on 3 inch EPS Plaza deck for the SDI.

Parameters:

DL = Unknown SL = 25 psf Joist spacing = 6'-0" O.C

Deck Capacity = TL = 98 psf

DL = TL - SL = 98 psf - 25 psf = 73 psf

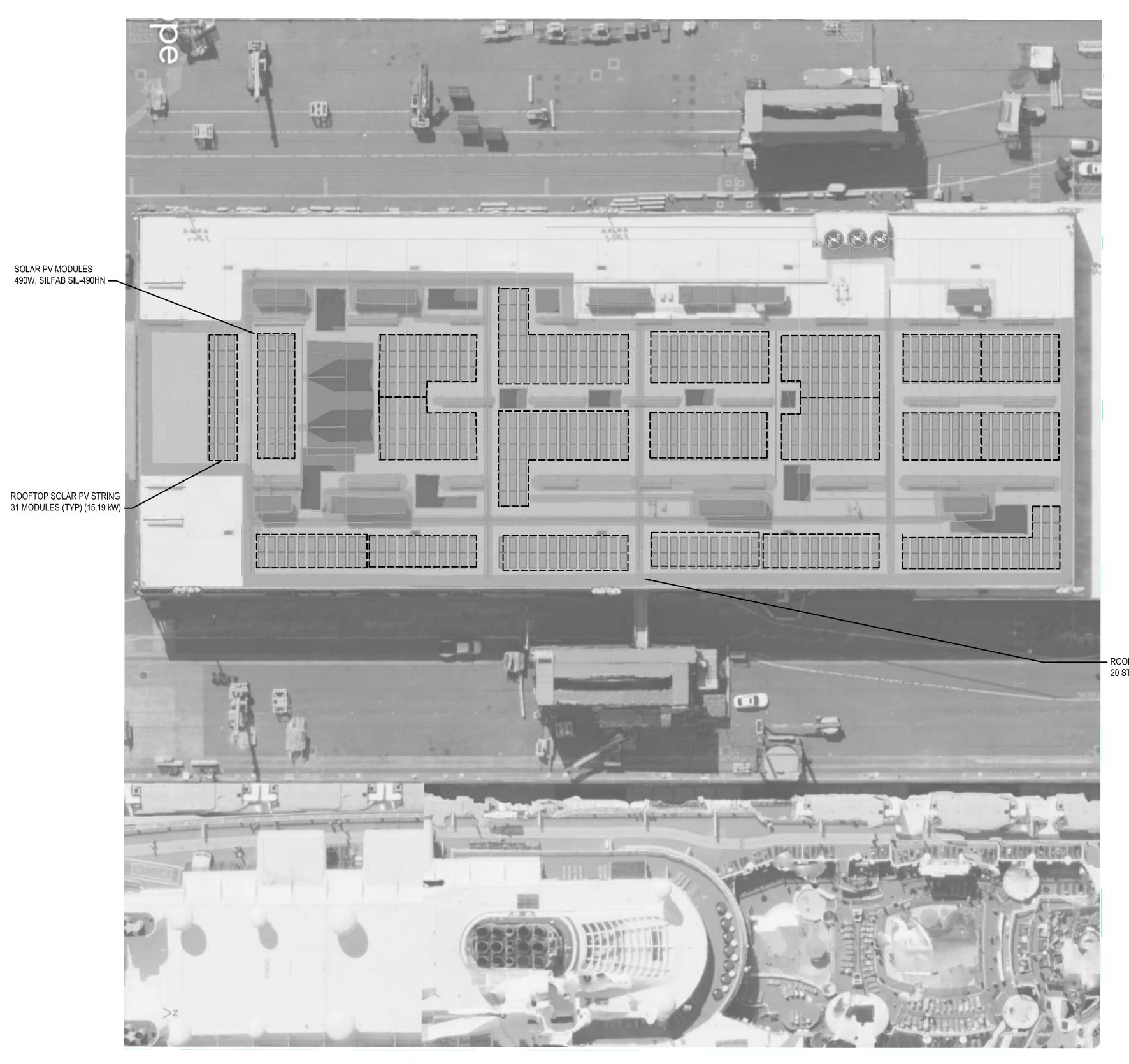
Summary - Deck could accommodate 73 psf dead load. Per Load verification calculations, if dead load equals 20 psf there would be 53 psf reserve capacity in the deck for solar.

95

Note, deck does not control the design.

Constant.		Max,	and the second second	in the state	LYN GARGE	Allowa	ble Total (De	ad + Live)	Uniform Loa	ad (PSF)	1 4 St. 198 - 5		1/1-1-12 N
No. of	Deck	SDI Const.	Service States	the state of the second	All marked		Span (ftin.)	C. to C.	of Support		144.02	Dispersion 1	the second
Spans	Туре	Span	5'-0	5'-6	6'-0	6'-6	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0
1012275	B 24	4'-8	66	52	42	36	30	27	24	21	20	a contraction of	1 10000000
	B 22	5'-7	91	71	57	47	40	34	30	27	24	22	20
	B 21	6'-0	104	81	64	53	44	38	33	29	26	24	22
1	B 20	6'-5	115	89	31	58	48	41	36	31	28	25	23
	B 19	7'-1	139	107	85	69	57	48	41	36	32	29	26
E F	B 18	7'-8	162	124	98	79	65	55	47	41	36	32	29
Section 1	B 16	8'-8	206	157	123	99	81	68	58	50	44	39	34
	B 24	5'-10	126	104	87	74	64	55	47	41	36	32	29
	B 22	6'-11	102	85	71	61	52	46	40	35	32	28	26
F	B 21	7'-4	118	97	82	70	60	52	46	41	36	33	29
2	B 20	7'-9	132	109	91	78	67	59	51	46	41	36	33
	B 19	8'-5	154	127	107	91	79	69	60	53	48	43	39
	B 18	9'-1	174	144	121	103	89	78	68	60	54	48	44
	B 16	10'-3	219	181	152	130	112	97	86	76	68	61	55
	B 24	5'-10	130	100	79	65	54	45	39	34	31	27	25
	B 22	6'-11	128	106	89	76	65	57	50	44	39	34	31
	B 21	7'-4	147	122	102	87	75	65	56	49	42	38	34
3	B 20	7'-9	165	136	114	97	84	72	61	53	46	41	36
	B 19	8'-5	193	159	134	114	98	84	71	61	53	47	41
F	B 18	9'-1	218	180	151	129	111	96	81	69	60	52	46
and the second	B 16	10'-3	274	226	190	162	140	119	100	85	73	64	56

VERTICAL LOADS FOR TYPE 1.5B


Notes: 1, Load tables are calculated using sectional properties based on the steel design thickness shown in the

Steel Deck Institute (SDI) Design Manual,

2. Loads shown in the shaded areas are governed by the live load deflection not in excess of 1/240 of the span.

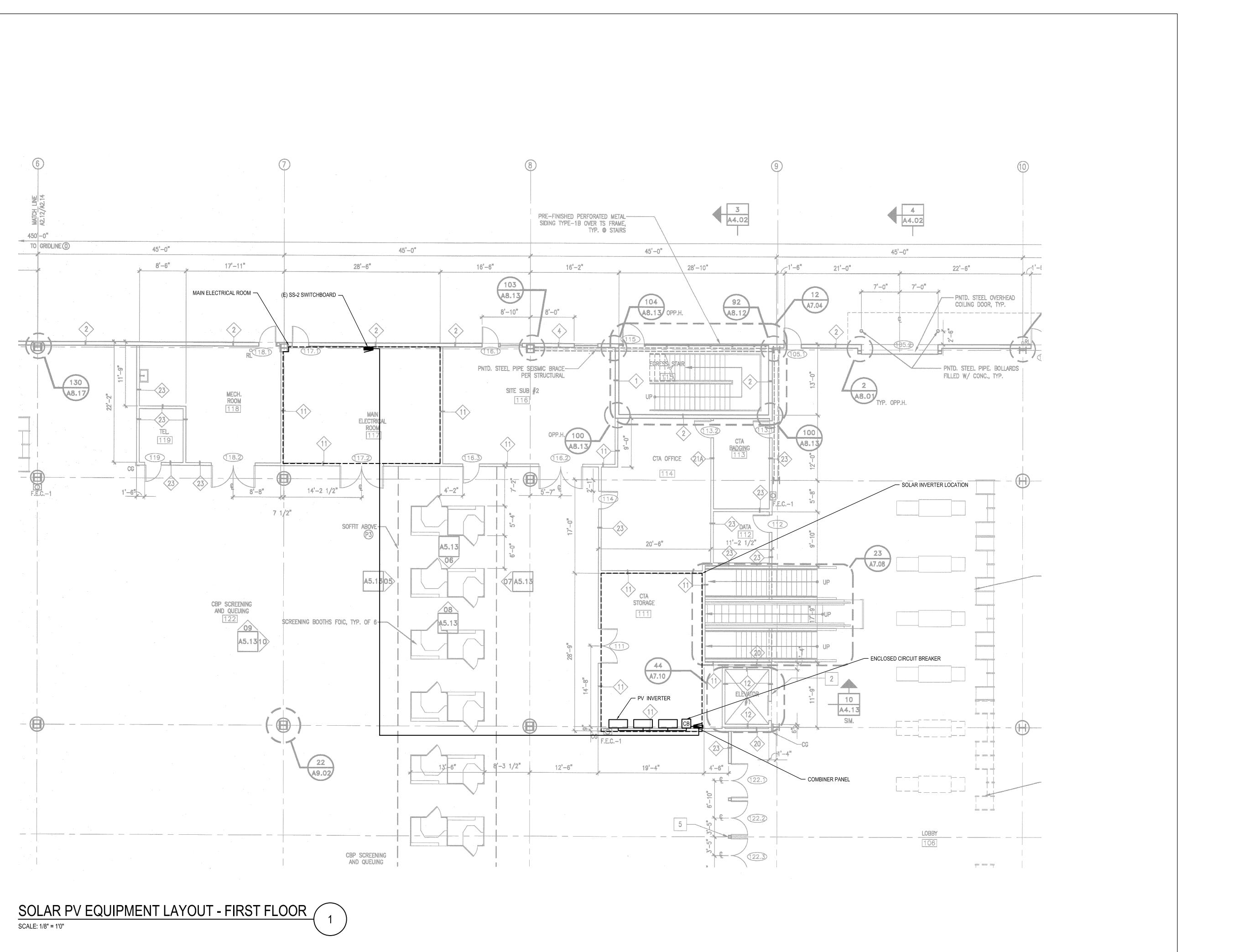
A dead load of 10 PSF has been included.

3. ** Acoustical Deck is not covered under Factory Mutual

303.8 kW ROOFTOP SOLAR PV ARRAY

DESCRIPTION DATE

BUILDING SMITH COVE PORT OF SEATTLE


Project: B23-24007 Contents:

ROOFTOP SOLAR PV MODULE LAYOUT

Drawn: JC Checked: TC Date: 12/19/24 Sheet Number:

E1.0

ROOFTOP SOLARS PV COMBINED
 20 STRINGS (303.8 kW)

12/20/2024 9:37:21 AM S:\SES\Projects\B23 Port of Seattle\B23-24007 POS On-Call - Solar Feasibility\9. Project Documents\SMITH COVE\CAD\E2.0(SMITH COVE).dwg

SÄZÄN

GROUP

600 Stewart St., Ste 1400

Seattle, Washington 98101

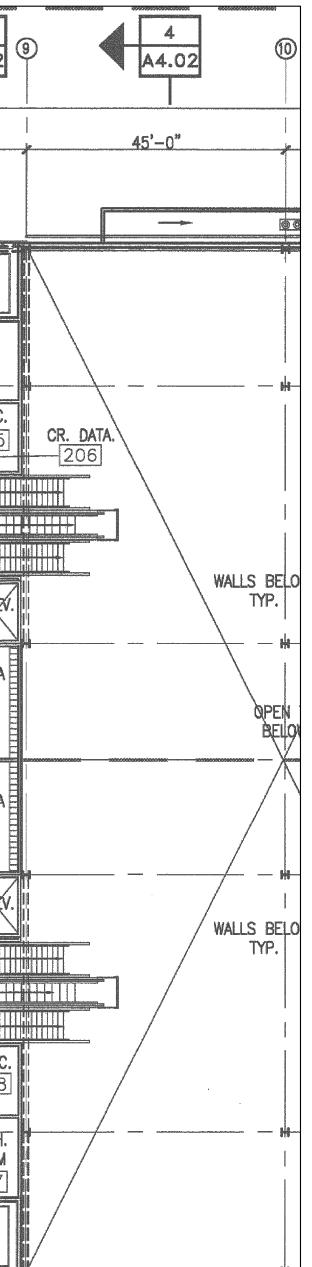
Mark

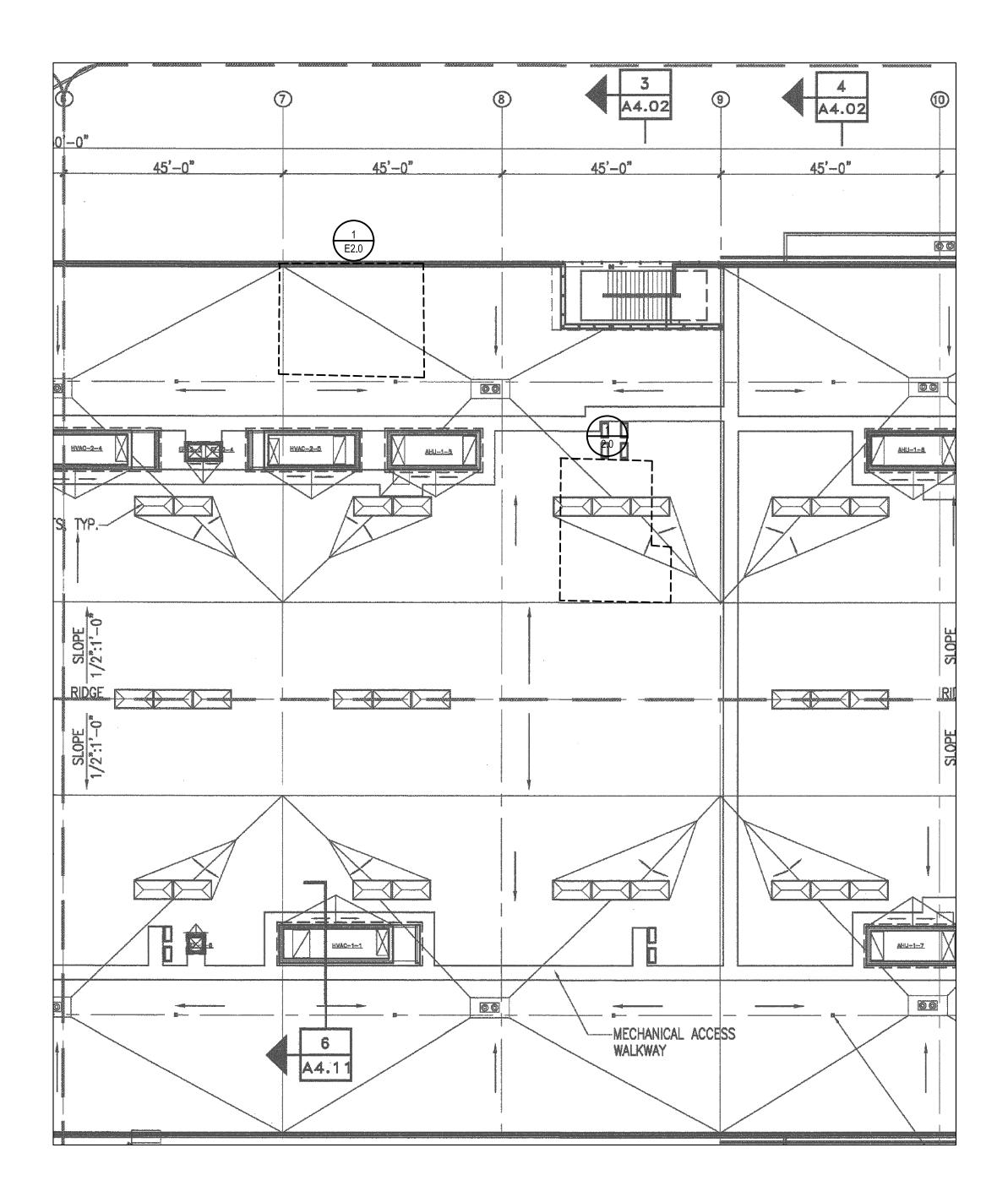
#	DESCRIPTION	DATE

BUILDING SMITH COVE PORT OF SEATTLE

Project: B23-24007 Contents:

SOLAR PV EQUIPMENT LAYOUT

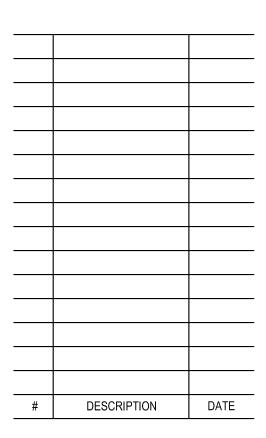

Drawn:JCChecked:TCDate:12/19/24Sheet Number:



		8 3 A4.02
45'-0"	45'-0"	45'-0"
	1 E2.0	
		CTA MECH.
		STOR. ROOM
		DN SHORE SERVICES 203
		SHORE SERVICES 202
		SHORE SERVICES AGENT 243 244 245 245
TICKETING		$ \leq DN + \cdots + $
		DATA 240 ELEC. 238
		CTA MECH. STOR. ROOM 236 237
		EGRESS STAIR

SOLAR PV EQUIPMENT LAYOUT - SECOND FLOOR

SCALE: 1" = 20'0"

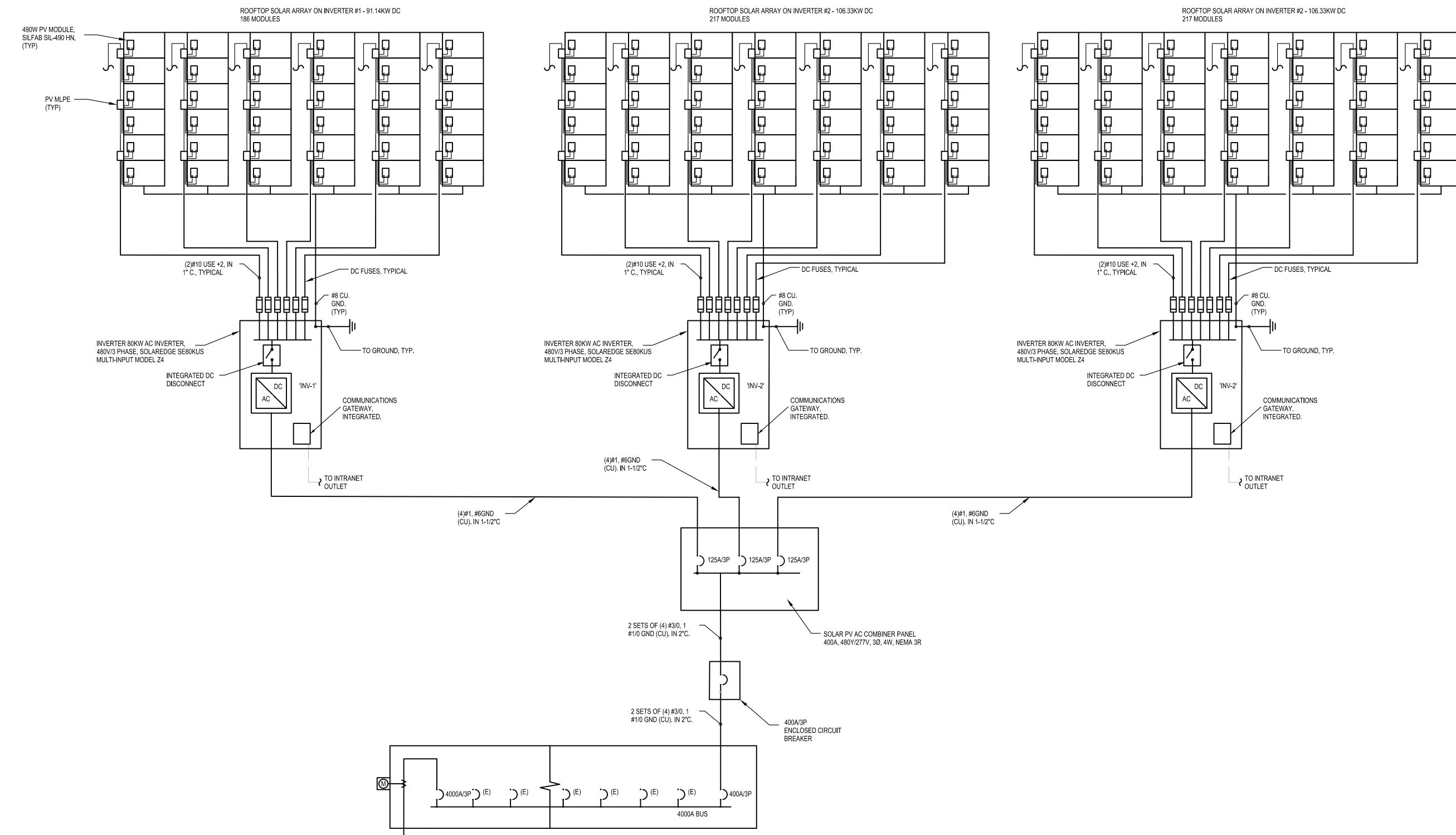

SOLAR PV EQUIPMENT LAYOUT - ROOF

SCALE: 1" = 20'0"

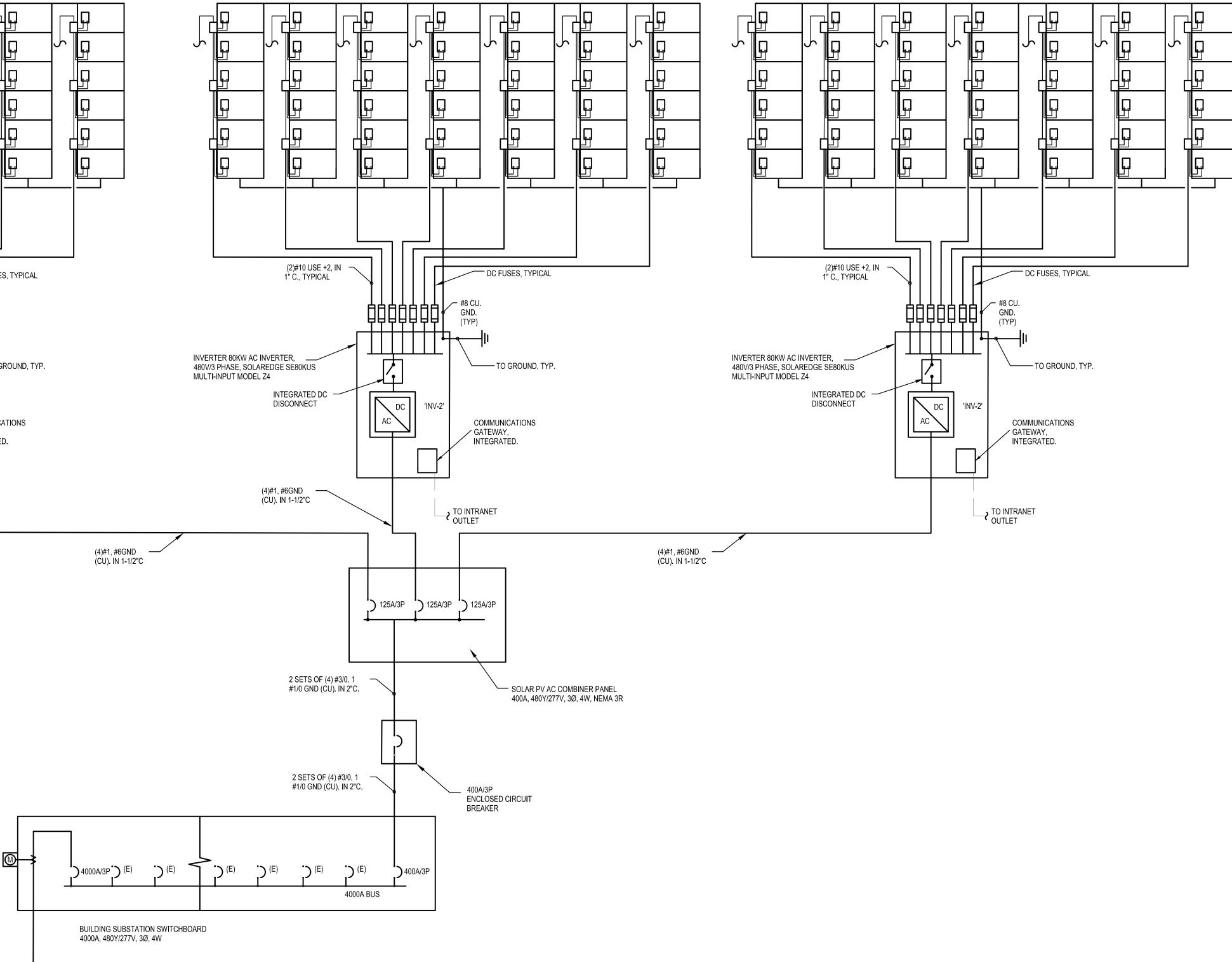
2

3

BUILDING SMITH COVE PORT OF SEATTLE



Project: B23-24007 Contents:


SOLAR PV EQUIPMENT LAYOUT

Drawn:JCChecked:TCDate:12/19/24Sheet Number:

SCALE: NTS

SOLAR PV SYSTEM - ONE LINE DIAGRAM /

SÄZÄN GROUP 600 Stewart St., Ste 1400 Seattle, Washington 98101
 Tel
 206.267.1700

 Fax
 206.267.1701

SAZAN # XXX-XXXXX

_____ ____ _____ _____ _____ ____ _____ _____ ____ DESCRIPTION DATE #

BUILDING SMITH COVE PORT OF SEATTLE

B23-24007 Project: Contents:

SOLAR PV SYSTEM -ONELINE DIAGRAM

Drawn: JC Checked: TC 12/19/24 Date: Sheet Number:

Project Details			
Name	Smith Cove North Segment	Date	12/04/2024
Location	2001 West Garfield Street, Seattle, WA 98119	Total modules	454
Module	Silfab: SIL-490 HN (35mm)	Total watts	222,460
Dimensions	Dimensions: 89.09" x 40.83" x 1.38" (2263.0mm x 1037.0mm x 35.0mm)	ASCE code	7-16

Load Conditions						
Risk category		II	Ground snow load		20 psf	
Wind speed		97 mph	Wind exposure		С	
Building Information						
Height		35.0 ft	Elevation		15.0 ft	
North-south		300.0 ft	East-west		150.0 ft	
Roof slope		1 °	Parapet height		24.0 in	
Fire setback		6.0 ft	Parapet thickness		8.0 in	
Roof material		EPDM	Roof manufacturer		n/a	
Color		n/a	Thickness		n/a	
BX Parameters						
Tilt angle		10 °	Seismic design		Prescriptive Method	
Block size		Full	Block weight		32.00 lbs	
Spectral Acceleration (S _{DS})		1.113	Seismic Design Category		D	
Calculations		Rectangular	Setback		6.7 ft	
Ballast Relocation		Yes	Supplemental Chasis		Yes	
Prescriptive Method Setbacks						
Between Arrays	1' 3.3"	Array to Fixed Object	2' 6.5"	Array to Roof Edge	2	2' 6.5"
		,		,		

Smith Cove North Segment (#1404690) BX

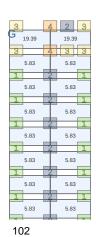
28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

4 14.82

9.84 4.

14.82

	Panels: 454	Chassis: 722	Blocks: 1942	Anch	ors: 0
	1	2 3	4	5	6
			A 1400	4	4
1			14.82	9.84	14.82
2			4 2 4 9.84	7.39	9.84
2			4 4	1.39	9.64
3			9.84	7.39	9.84
			4 4	4	1 3
4			9.84	7.39	9.84
			4 4	4	1 3
5			9.84	7.39	9.84
			4 4	4	1 3
6			9.84	7.39	9.84
7			9.84	7.39	9.84
'			4 4	1.55	1 3
8			9.84	7.39	9.84
			3 1 4	4	1 3
9			9.84	7.39	9.84
			3 1 4	4	1 3
10			9.84	7.39	9.84
			3 1 4	4	1 3
11			9.84	7.39	9.84
12			3 1 4	7.39	9.84
12			9.84	7.39	9.84
13			9.84	7.39	9.84
			3 4	4	3
14			9.14	7.14	9.14
			3 4	4	3
15			9.14	7.14	9.14
			414	4	14
16			11.94	9.14	11.94
17			4 4	4	4
17					
18					
10			4 3 4	2 4	2 4
19			D 23.46	17.44	17.44
			4 4 4	4 4	3 4
20			9.14	7.14	7.14
			4 4	3	
21			9.14	7.14	7.14
~~~			4 4	3	
22			9.14	7.14	7.14
			4 4	3	


9	10	11
2 3 3 12.24	7.83	4 4
3 4		4 4
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		4 3
5.63	4.4	9.84
1 2		3 3
5.63	4.4	9.14
1 2		3 3
5.63	4.4	9.14
2 2		4 3
6.42	5.63	11.94
2 2		3 2

4 3 4	2 4	2 4	4	1 4	4	4	1 4
23.46	17.44	17.44	17.44	15.98	7.83	7.83	23.46
4 4 4	4 4	3 4	4	34	3	4	34
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	3	3	3	2	1	3	4
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	3	3	3	2	1	3	4
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	3	3	3	2	1	3	4
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
3 4	3	3	3	2	1	3	4
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	3	3	3	2	1	3	3
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	3	3	3	2		3	3
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	3	3	3	2	2	3	4
9.14	7.14	7.14	7.14	7.14	4.4	4.4	9.14
4 4	4	4	4	- 3	2	4	. 4
11.94	9.14	9.14	9.14	9.14	5.63	5.63	11.94
4 4	4	4	3	3	4	4	4

4 1 4		4 1 4
19.39	13.2	19.39
5.83	5.13	5.83
5.83	5.13	5.83
5.83	5.13	5.83
5.83	5.13	5.83
5.83	5.13	5.83
5.83	5.13	5.83
5.83	5.13	5.83
7		

4	4	4 1 4
15.43	11.14	19.39
5.41	4.7	5.83
5.41	4.7	5.83
1	2	2 1
5.41	4.7	5.83
5.41	4.7	5.83
5.41	4.7	5.83
5.41	4.7	5.83
5.41	4.7	5.83

4	16	4	17	Α	18
-	9.84	*	9.84	4	14.82
4	1 4	a		4	2 4
	7.39		7.39		9.84
4.	1 4			4	4
	9.84		7.39		9.84
4	6	1		4	3
			9.84		9.84
		3	<u> </u>	4	2 3
			9.84		9.84
		3		4	2 3
			9.84		9.84
		3	ļ	4	2 3
			9.84		9.84
		3	9.84	4	9.84
		3	5.04		9.84
			9.84		9.84
		3		4	2 3
			9.84		9.84
		3		4	2 3
			9.84		9.84
		3		4	2 3
			9.84		9.84
		3		4	2 3
			9.84 1		9.84
		3		4	1 3
			9.14		9.14
		3	9.14	4	9.14
		3	9.14	4	9.14
			9.14		9.14
		3	-	4	1 3
			9.14		9.14
		3		4	1 3
			9.14	T	9.14
		3	<u> </u>	4	1 3
			9.14		9.14
		3		4	1 3
			9.14		9.14
		3	0.14	4	9.14
		3	9.14		9.14
		3	9.14	-	9.14
		3		4	1 3
			9.14		9.14
		3		4	1 3
			9.14	Τ	9.14
		3		4	1 3
			9.14		9.14
		3		4	1 3
			9.14		9.14
		3		4	1 3
			9.14		9.14
		3	11.04	4	2 3
		2	11.94	4	11.94
		6	1	**	6



Last updated by Tom Bowen on 12/04/24 03:21 PM

## Smith Cove North Segment (#1404690)

#### IRONRIDGE 28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

											_
39							5.83	-	5.13		5.83
59						-1	5.63		0.13		5.65
40						-1-	5.83	6	5.13		5.83
40						7	5.03	12	5.15	2	1
41							5.83	T	5.13	T	5.83
						2		2		2	2
42							7.89	T	5.83	T	7.89
						3		2		2	3
43											
44							6	A		A	6
45						4	19.39	4	13.2	4	19.39
45						3	19.39		13.2		19.39
46						3	5.83		5.13	-	5.83
40						1	0.00	12	0.10	2	5.05
47						-	5.83	-	5.13		5.83
						1.		2		2	1
48							5.83		5.13	T	5.83
						1.		2		2	1
49							5.83		5.13	T	5.83
						1.		2		2	1
50							5.83		5.13		5.83
						1.		2		2	1
51							5.83		5.13		5.83
						2		3		3	2
52							8.24		6.27		8.24
						3		4		4	3
53							8.24		6.27		8.24
54						3		4	0.07	4	
54	A	A	4	Δ			8.24		6.27		8.24
55	4 19.39	4	13.2	4	13.2	4	6.27		6.27	4	8.24
55	4	4	13.2	4	13.2	4	0.27	-	0.27	4	8.24
56	8.24		6.27		6.27		6.27		6.27	-	8.24
50	4	4	0.21	4	0.2.1	4	0.27	4	0.27	4	3
57	12.62	T	8.53	7	8.53	T	8.53	7	8.24	7	12.62
	4	3		3		3		3		3	4
58											
59											

, da		6		6	
	5.41		4.7		5.83
1		2		2	1
	5.41		4.7		5.83
1		2		2	1
	5.41		4.7		5.83
2		2		2	2
	6.59		5.41		7.89
2		2		2	2

4		4		4	1	4					
J	15.43		11.14	Т	19.39						
3		4		4		3					
	5.41		4.7		5.83						
1.		2		2		1					
	5.41		4.7		5.83						
1		2		2		1					
	5.41		4.7		5.83						
1.		2		2		1					
	5.41		4.7		5.83						
1		2		2	_	1					
	5.41		4.7		5.83						
1.		2		2		1					
	5.41		4.7		5.83						
2		2		3		2					
	7.55		6.15		8.24						
2		3		3		3					
	7.55		6.15		8.24						
2		3		3		3					
	7.55		6.15		8.24						
2		3		3		4			4		4
	7.55		6.15		6.27			13.2		13.2	
2		3		2		4			4		4
	7.55		6.15		6.27		_	6.27		6.27	
2		3		3		4			4		4
	9.33		7.55		8.53		_	8.53		8.53	
4		2		2		Co3	3		3		3

ala	64		ala .
5.83	I	5.83	
1	2		1
5.83		5.83	
2	3		2
7.89	T	7.89	
2	2		2

3	4	2	3
19.39		19.3	
3		3	2
5.83	-	5.83	3
1	2		1
5.83		5.83	
1	2		1
5.83		5.83	3
1	6		1
5.83		- 5.83	3
1	2		1
5.83		5.83	
1	2		1
5.83		5.83	
1	2		1
5.83		5.83	
2	4		2
8.24		8.24	
3	4	11	3
8.24		8.24	ı
3	4	1	3
8.24		8.24	
3	4	1	3
8.24		8.24	
3	4	2	3
12.62		12.6	
2	4		2

* If any changes are made to panel placement or location relative to roof edges, the ballast plan must be recalculated.

#### Sliding Group Information

60

Sliding group	Module count	Anchor count	Chassis count	Block count	Dead load	Area	PSF
А	48	0	87.00 (19 supplementals)	274.00	11,951.01	1,631.82	7.32
В	48	0	68.00	176.00	8,715.64	1,631.82	5.34
С	62	0	122.00 (27 supplementals)	365.00	15,841.68	2,108.65	7.51
D	80	0	109.00 (10 supplementals)	350.00	16,314.03	2,767.12	5.90
E	36	0	54.00 (2 supplementals)	104.00	5,655.30	1,235.12	4.58
F	36	0	53.00 (1 supplementals)	101.00	5,554.35	1,235.12	4.50
G	22	0	38.00 (2 supplementals)	70.00	3,688.14	756.76	4.87
Н	26	0	48.00 (6 supplementals)	110.00	5,247.96	888.91	5.90
I	48	0	72.00 (4 supplementals)	205.00	9,661.90	1,677.31	5.76
J	48	0	71.00 (3 supplementals)	187.00	9,080.95	1,677.30	5.41



Ballast and Anchors										
Module count	454	Chassis count	722 (74 supplemental)	Block count	1,942					
Wind Anchors	0	Seismic Anchors	n/a	Anchors needed	0					
Block weight	62,144.00 lbs	Components weight	29,566.96 lbs	Total weight	91,710.96 lbs					
Area	15,609.92 sq. ft			Ground Coverage Ratio	0.73					

Avg dist dead load

5.88 psf

Max chassis weight (Incl. 1 Module)

190.11 lbs



Bill of Materials		
Part	Spares	Qty
BX Components		
BX-10D-P1 BX Chassis 10 deg	0	722
BX-TCL-35MM-M1 BX Top Clamp, 35mm, Mill	0	2639
BX-BCL-M1 BX Bottom Clamp w/ Hardware	0	2639
BX-RB38-M1 38" Row Bonding Jumper	0	134
PV-LUG-02-A1 PV Module Grounding Lug	0	10
BX-MB8-M1 8" Module Bonding Jumper	0	310
QMAFBU-A-25 Accessory Frame Bracket, Universal, Mill	0	227



#### Assumptions

The results produced by IronRidge's Design Assistant are only valid if all the following conditions are met and the design parameters were entered accurately.

#### **Design Parameters**

- Design Assistant ballast calculations assume rectangular buildings.
- Building must be less than 60ft high, or building height must be less than the least horizontal dimension.
- Roof is a single level (e.g. no penthouse that extends above roof for part of the area).
- Roof has sharp eaves.
- Calculations assume a setback around each obstruction equal or larger than the height of the obstruction.
- •
- Calculations assume a setuack around each obstruction equal of larger than the negrit of the obstruction. Calculations assume that the array is aligned to the NW corner of the roof plus the setback. Panel edges must be parallel to the roof edges. Maximum rows and columns for the array will be calculated to ensure that setbacks on the east and south are at least as large as the setbacks on the north and west. Verify your minimum setback requirements with your local AHJ. If the building could hold an array larger than the maximum size array the Design Assistant can configure (60 rows x 60 columns), the setback will be expanded on the east and south sides of the array to extend all the way to the edge of the roof beyond the maximum sized array.
- Design Assistant does not account for any accelerated wind flow due to surrounding buildings.
- Defaulted at Soil Type D for seismic calculations.

#### Seismic Design

- · Prescriptive setbacks are calculated using the approach from ASCE 7-16.
- Minimum delta_{mpv} of 2 feet.
- Distance between a solar array and a roof edge without a qualifying parapet is 2.0 *  $I_e$  * delta_{mpv} •
- Ie, seismic importance factor, is from ASCE Section 1.5.1, Table 1.5-2.

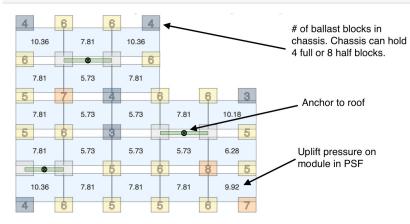
#### Component/System Properties

- · By default, anchor placements are made using the attachment's capacity of 525 uplift/392 lateral (lbs). It is the user's responsibility to verify reaction load capacity of the structural decking. If the structural decking cannot sustain these loads, the actual limits can be entered into Design Assistant (Anchor uplift strength/Anchor lateral strength).
- Concrete ballast block:
  - Manufactured per ASTM C 1491 (Standard specification for concrete pavers).

  - Manufactured to resist freeze-thaw as required per local conditions.
     Design Assistant defaults block weights to 15.5 lbs (half block) and 32 lbs (full block). User is responsible for adjusting these weights to match actual blocks sourced.
- Chassis Weight: ~ 4.7 lbs
- E-W Module Gap: .375"
- Inter-Row Spacing: 5 Degrees = 10" 10 Degrees = 13"
- Chassis overhang:
- 5 Degrees
  - North ~ 19" and South ~ 15.5"
  - 10 Degrees
  - North ~ 17" and South ~ 20.5"
- Coefficients of Static Friction under wet conditions for Tested Roof Types:
  - TPO = .69
  - KEE = .60 • PVC = .60
  - Built Up = .50
  - Modified Bitumen = .50
  - EPDM = .73 ~

#### Ratings/Certifications

- UL 2703 Listed (See installation manual for more details)
  Class A System Fire Rating Per UL 1703
- Designed and Certified for Compliance with the International Building Code, ASCE/SEI-7, and SEAOC PV Guidelines
- Wind Tunnel Testing by I.F.I
- User to verify module manufacturer's clamping location and pressure limits.


#### Additional Notes

- Installer must clean roof of all debris before installing BX chassis and/or slip sheets. It is recommended to blow off debris or loose roofing material from Modified Bitumen or Built Up roofs
- If array moves due to an earthquake, it shall be restored to its original position.
- If anchors are damaged due to an earthquake, they shall be replaced.
- Building engineer should evaluate the effect of snow loading and drifts on the roof prior to installation of the array.
- Site specific engineering is required if the system design exceeds the current capabilities of IronRidge's Design Assistant. Please contact technical support for additional assistance. IronRidge's technical support can be reached by the following:
- Email: techsupport@ironridge.com
  - Phone: 800-227-9523 Ext. 1



#### Roof Section Ballast Plan Legend

#### Example Array

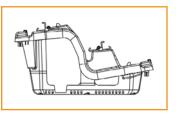


## CHECKLIST

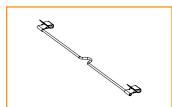
### **PRE-INSTALLATION**

□ Verify module compatibility. See <u>Page 11</u> for info.

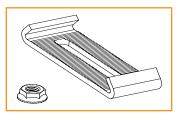
### **TOOLS REQUIRED**


- □ Cordless Drill (optional)
- □ Torque Wrench (0-250 in-lbs)
- □ 9/16" Socket
- 7/16" Socket
- □ 1/2" Socket
- String Chalk Line

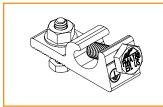
### **TORQUE VALUES**


or new location.

- □ Top Clamp Nuts (1/2" Socket): 120 in-lbs
- □ 5/16" MLPE Flange Bolts (1/2" Socket): 60 in-lbs
- □ 5/16" String Inverter Mount Bolts (1/2" Socket): 80 in-lbs
- □ 5/16" L-Foot to Chassis Nuts (1/2" Socket): 120 in-lbs
- □ 3/8" T-Bolt Bonding Hardware (7/16" Socket): 250 in-lbs
- □ 1/4" String Inverter Mount Hdw (7/16" Socket): 80 in-lbs
- □ Flat Roof Attach to L-Foot Hdw (9/16" Socket): 250 in-lbs
- □ Module Grounding Lug Nut (1/2" Socket): 60 in-lbs
  - □ Grounding Lug Terminal Screws (3/8" Socket): 20 in-lbs


### COMPONENTS




5° BX Chassis

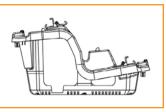


8" Module Bonding Jumper Single Use Only

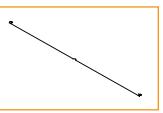


Bottom Clamp

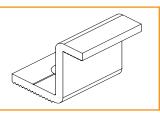



PV Module Grounding Lug




Cable Tie








10° BX Chassis



38" Row Bonding Jumper Single Use Only



Top Clamp (Height Varies)



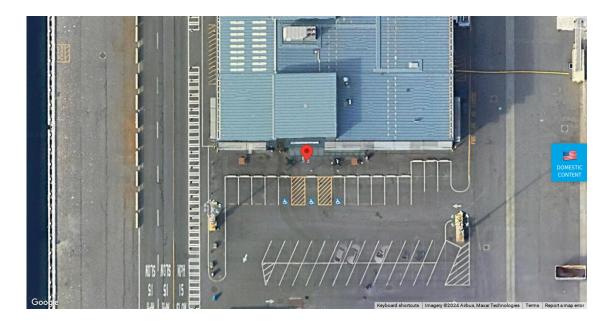
**MLPE Mounting Hardware** 



Edge Clip Cable Tie

(JayBox Q

Jaybox




Flat Roof Attachment Kit

Unless otherwise noted, all components have been evaluated for multiple use. They can be uninstalled and reinstalled in the same



Project Details			
Name	Smith Cover South Segment	Date	12/04/2024
Location	2001 West Garfield Street, Seattle, WA 98119	Total modules	172
Module	Silfab: SIL-490 HN (35mm)	Total watts	84,280
Dimensions	Dimensions: 89.09" x 40.83" x 1.38" (2263.0mm x 1037.0mm x 35.0mm)	ASCE code	7-16



Load Conditions					
Risk category		II	Ground snow load	20	) psf
Wind speed		97 mph	Wind exposure	C	
Building Information					
Height		40.0 ft	Elevation	11.0 f	t
North-south		200.0 ft	East-west	150.0	ft
Roof slope		1°	Parapet height	24.0 i	n
Fire setback		6.0 ft	Parapet thickness	8.0 in	
Roof material		EPDM	Roof manufacturer	n/a	
Color		n/a	Thickness	n/a	
BX Parameters					
Tilt angle		10 °	Seismic design	Prescriptive Met	hod
Block size		Full	Block weight	32.00 lbs	
Spectral Acceleration ( $S_{DS}$ )		1.109	Seismic Design Category	D	
Calculations		Rectangular	Setback	6.7 ft	
Ballast Relocation		Yes	Supplemental Chasis	Yes	
Prescriptive Method Setbacks					
Between Arrays	1' 3.1"	Array to Fixed Object	2' 6.2"	Array to Roof Edge	2' 6.2"

Smith Cover South Segment (#1404702) BX

28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

34545		

	Panels: 172	Chassis:	292 Bl	ocks: 962	Anc	nors: 0												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																		
2																		
3																		
4																		
5																		
6																		
7																		
8																		
9																		
10																		
11																		
12				A	17.35	10.65	17.35			4 12.63	4 4	1 4					B 17.35	1 2 4 17.35
13					10.65	8.13	10.65			5.9	8.13	3 4 10.65					4 1 4	10.65
14					9.66	7.61	9.66			5.9	7.61	9.66					9.66	9.66
15					9.66	7.61	9.66			5.9	7.61	9.66					9.66	9.66
16					9.66	7.61	7.61	18.7	8.12	4.64	7.61	9.66					9.66	9.66
17					9.66	7.61	7.61	7.61	4 1 4.64	4.64	7.61	9.66					9.66	9.66
18					9.66	7.61	7.61	7.61	4.64	4.64	7.61	9.66					9.66	9.66
19					9.66	7.61	7.61	7.61	4.64	4.64	7.61	9.66					9.66	9.66
20					9.66	7.61	7.61	7.61	4.64	4.64	7.61	9.66					9.66	9.66
21					12.83	9.66	9.66	9.66	5.9	5.9	9.66	12.83					9.66	9.66
22					4		\$ 4		4	4	4 4	49					9.66	9.66
23																	9.66	9.66
24																	9.66	9.66
25																	9.66	9.66
26																	9.66	9.66
27																	9.66	9.66
28																	9.66	9.66
29					4	1 4	1 4		4	4	4 4	4					9.22	9.22
30				C	20.61	14	14	14	12.19	12.19 4 1	14 4 4	20.61					9.22	9.22
31					9.22	6.7	6.7	6.7	6.55	6.55	6.7	9.22					9.22	9.22
32					9.22	6.7	6.7	6.7	6.55	6.55	6.7 4 4	9.22					9.22	9.22
33					13.72	9.3	9.3	9.3	8.02	8.02	9.3	13.72					13.72	13.72
34									L									
35				4	4	1 4	1 4		4	4	4 4	1 4						
36					20.61	14	14	14	12.19 4 1	12.19	14	20.61						
37					9.22	6.7	6.7	6.7	6.55	6.55	6.7 4 4	9.22						
38					13.72	9.3	9.3	9.3	8.02	8.02	9.3	13.72						
																	444	

40 41

39

* If any changes are made to panel placement or location relative to roof edges, the ballast plan must be recalculated.

#### Sliding Group Information

Sliding group	Module count	Anchor count	Chassis count	Block count	Dead load	Area	PSF
A	72	0	103.00 (8 supplementals)	356.00	16,019.89	2,501.72	6.40
В	44	0	93.00 (24 supplementals)	268.00	11,562.87	1,483.55	7.79
С	32	0	52.00 (7 supplementals)	184.00	7,974.80	1,178.92	6.76
D	24	0	44.00 (8 supplementals)	154.00	6,517.64	914.22	7.13

#### Ballast and Anchors

Module count	172	Chassis count	292 (47 supplemental)	Block count	962
Wind Anchors	0	Seismic Anchors	n/a	Anchors needed	0
Block weight	30,784.00 lbs	Components weight	11,291.20 lbs	Total weight	42,075.20 lbs
Area	6,078.41 sq. ft			Ground Coverage Ratio	0.71
Avg dist dead load	6.92 psf			Max chassis weight (Incl. 1 Module)	190.11 lbs



Bill of Materials		
Part	Spares	Qty
BX Components		
BX-10D-P1 BX Chassis 10 deg	0	292
BX-TCL-35MM-M1 BX Top Clamp, 35mm, Mill	0	1004
BX-BCL-M1 BX Bottom Clamp w/ Hardware	0	1004
BX-RB38-M1 38" Row Bonding Jumper	0	39
PV-LUG-02-A1 PV Module Grounding Lug	0	4
BX-MB8-M1 8" Module Bonding Jumper	0	129
QMAFBU-A-25 Accessory Frame Bracket, Universal, Mill	0	86



#### Assumptions

The results produced by IronRidge's Design Assistant are only valid if all the following conditions are met and the design parameters were entered accurately.

#### **Design Parameters**

- Design Assistant ballast calculations assume rectangular buildings.
- Building must be less than 60ft high, or building height must be less than the least horizontal dimension.
- Roof is a single level (e.g. no penthouse that extends above roof for part of the area).
- Roof has sharp eaves.
- Calculations assume a setback around each obstruction equal or larger than the height of the obstruction.

- Calculations assume a setuack around each obstruction equal of larger than the negrit of the obstruction. Calculations assume that the array is aligned to the NW corner of the roof plus the setback. Panel edges must be parallel to the roof edges. Maximum rows and columns for the array will be calculated to ensure that setbacks on the east and south are at least as large as the setbacks on the north and west. Verify your minimum setback requirements with your local AHJ. If the building could hold an array larger than the maximum size array the Design Assistant can configure (60 rows x 60 columns), the setback will be expanded on the east and south sides of the array to extend all the way to the edge of the roof beyond the maximum sized array.
- Design Assistant does not account for any accelerated wind flow due to surrounding buildings.
- Defaulted at Soil Type D for seismic calculations.

#### Seismic Design

- · Prescriptive setbacks are calculated using the approach from ASCE 7-16.
- Minimum delta_{mpv} of 2 feet.
- Distance between a solar array and a roof edge without a qualifying parapet is 2.0 *  $I_e$  * delta_{mpv} •
- Ie, seismic importance factor, is from ASCE Section 1.5.1, Table 1.5-2.

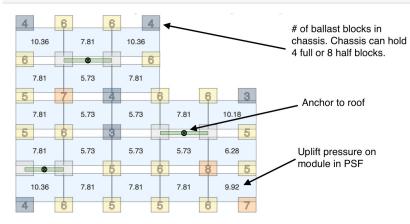
#### Component/System Properties

- · By default, anchor placements are made using the attachment's capacity of 525 uplift/392 lateral (lbs). It is the user's responsibility to verify reaction load capacity of the structural decking. If the structural decking cannot sustain these loads, the actual limits can be entered into Design Assistant (Anchor uplift strength/Anchor lateral strength).
- Concrete ballast block:
  - Manufactured per ASTM C 1491 (Standard specification for concrete pavers).

  - Manufactured to resist freeze-thaw as required per local conditions.
     Design Assistant defaults block weights to 15.5 lbs (half block) and 32 lbs (full block). User is responsible for adjusting these weights to match actual blocks sourced.
- Chassis Weight: ~ 4.7 lbs
- E-W Module Gap: .375"
- Inter-Row Spacing: 5 Degrees = 10" 10 Degrees = 13"
- Chassis overhang:
- 5 Degrees
  - North ~ 19" and South ~ 15.5"
  - 10 Degrees
  - North ~ 17" and South ~ 20.5"
- Coefficients of Static Friction under wet conditions for Tested Roof Types:
  - TPO = .69
  - KEE = .60
  - PVC = .60
  - Built Up = .50
  - Modified Bitumen = .50 EPDM = .73 ~

#### Ratings/Certifications

- UL 2703 Listed (See installation manual for more details)
  Class A System Fire Rating Per UL 1703
- Designed and Certified for Compliance with the International Building Code, ASCE/SEI-7, and SEAOC PV Guidelines
- Wind Tunnel Testing by I.F.I
- User to verify module manufacturer's clamping location and pressure limits.


#### Additional Notes

- Installer must clean roof of all debris before installing BX chassis and/or slip sheets. It is recommended to blow off debris or loose roofing material from Modified Bitumen or Built Up roofs
- If array moves due to an earthquake, it shall be restored to its original position.
- If anchors are damaged due to an earthquake, they shall be replaced.
- Building engineer should evaluate the effect of snow loading and drifts on the roof prior to installation of the array.
- Site specific engineering is required if the system design exceeds the current capabilities of IronRidge's Design Assistant. Please contact technical support for additional assistance. IronRidge's technical support can be reached by the following:
- Email: techsupport@ironridge.com
  - Phone: 800-227-9523 Ext. 1



#### Roof Section Ballast Plan Legend

#### Example Array

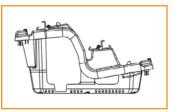


## CHECKLIST

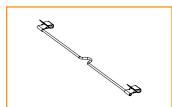
### **PRE-INSTALLATION**

□ Verify module compatibility. See <u>Page 11</u> for info.

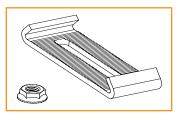
### **TOOLS REQUIRED**


- Cordless Drill (optional)
- Torque Wrench (0-250 in-lbs)
- 9/16" Socket  $\Box$
- 7/16" Socket
- 1/2" Socket
- String Chalk Line

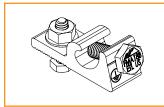
### **TORQUE VALUES**


- Top Clamp Nuts (1/2" Socket): 120 in-lbs
- 5/16" MLPE Flange Bolts (1/2" Socket): 60 in-lbs
- 5/16" String Inverter Mount Bolts (1/2" Socket): 80 in-lbs Π
- 5/16" L-Foot to Chassis Nuts (1/2" Socket): 120 in-lbs
- 3/8" T-Bolt Bonding Hardware (7/16" Socket): 250 in-lbs
- 1/4" String Inverter Mount Hdw (7/16" Socket): 80 in-lbs
- Flat Roof Attach to L-Foot Hdw (9/16" Socket): 250 in-lbs
- Module Grounding Lug Nut (1/2" Socket): 60 in-lbs
  - Grounding Lug Terminal Screws (3/8" Socket): 20 in-lbs

> Unless otherwise noted, all components have been evaluated for multiple use. They can be uninstalled and reinstalled in the same


### COMPONENTS




5° BX Chassis

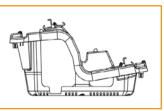


8" Module Bonding Jumper Single Use Only

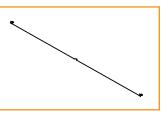


Bottom Clamp

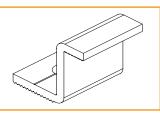



PV Module Grounding Lug




Cable Tie








10° BX Chassis



38" Row Bonding Jumper Single Use Only

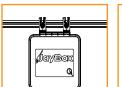


Top Clamp (Height Varies)



**MLPE Mounting Hardware** 




Edge Clip Cable Tie





Attachment Kit

or new location.



Jaybox



## SILFAB COMMERCIAL



SIL-490 HN



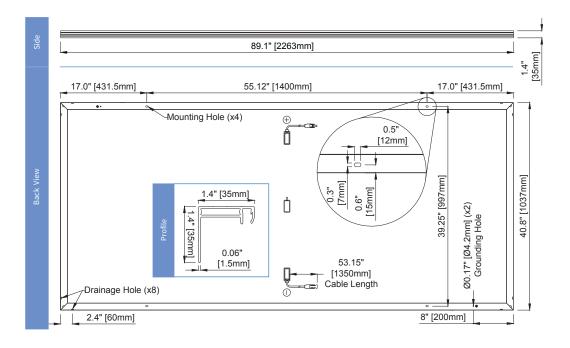
# ENGINEERED FOR COMMERCIAL & UTILITY PROJECTS

Superior performance and proven reliability from a trusted source.








ELECTRICAL SPECIFICATIONS		490 HN					
Test Conditions		STC	NOCT				
Module Power (Pmax)	Wp	490	362				
Maximum power voltage (Vpmax)	V	45.23	41.61				
Maximum power current (Ipmax)	А	10.83	8.69				
Open circuit voltage (Voc)	V	53.96	49.64				
Short circuit current (Isc)	А	11.36	9.12				
Module efficiency	%	20.9%	19.3%				
Maximum system voltage (VDC)	V	15	500				
Series fuse rating	А	20					
Power Tolerance	Wp	0 to	p+10				

Measurement conditions: STC 1000 W/m² • AM 1.5 • Temperature 25 °C • NOCT 800 W/m² • AM 1.5 • Measurement uncertainty ≤ 3% Sun simulator calibration reference modules from Fraunhofer Institute. Electrical characteristics may vary by ±5% and power by 0 to +10W.

MECHANICAL PROPERTIES / CO	OMPONENTS	METRIC	METRIC IMI					
Module weight		25.8kg ±0.2kg		56.9lbs ±0.4lbs	9lbs ±0.4lbs			
Dimensions (H x L x D)		2263 mm x 1037 mm x 35 mm	1	89 in x 40.8 in x 1.37 i	in			
Maximum surface load (wind/snow)*		2400 Pa rear load / 5400 Pa fr	ont load	50.1 lb/ft² rear load /	112.8 lb/ft ²	front load		
Hail impact resistance		ø 25 mm at 83 km/h		ø 1 in at 51.6 mph				
Cells		156 Half cells - Si mono PERC 9 busbar - 83 x 166 mm		156 Half cells- Si moi 9 busbar - 3.26 x 6.53				
Glass 3.2 mm high transmittanc DSM antireflective coating			empered,	0.126 in high transm DSM antireflective co		pered,		
Cables and connectors (refer to insta	llation manual)	1350 mm, ø 5.7 mm, MC4 fror	n Staubli	53.15 in, ø 0.22 in (12	AWG), MC4	from Staubli		
Backsheet			High durability, superior hydrolysis and UV resistance, multi-layer dielectric film, fluorine-free PV white backsheet					
Frame		Anodized Aluminum (Silver)						
Bypass diodes		3 diodes-30SQ045T (45V max	DC blocking voltage, 30A max for	ward rectified current	t)			
Junction Box		UL 3730 Certified, IEC 62790 0	Certified, IP68 rated					
TEMPERATURE RATINGS			WARRANTIES					
Temperature Coefficient Isc	+0.064 %/°C		Module product workmanship	Module product workmanship warranty 25 years**				
Temperature Coefficient Voc	-0.28 %/°C		Linear power performance gu	Linear power performance guarantee				
Temperature Coefficient Pmax	-0.36 %/°C				≥ 97.1%	end 1st yr		
NOCT (± 2°C)	45 °C					end 12th yr end 25th yr		
Operating temperature	-40/+85 °C					end 30th yr		
CERTIFICATIONS				SHIPPING	SPECS			
Product			, UL 61730-1/-2, IEC 61215-1/-2. IEC onia Corrosion; IEC61701:2011 Sal		Pallet:	31		
Toddet		rtifed, UL Fire Rating: Type 1	01110 0011031011, 12001101.2011 380	Pallets Per Tru	uck	23		
Factory	ISO9001:2015			ruck	713			

Warning. Read the Safety and Installation Manual for mounting specifications and before handling, installing and operating modules.
 12 year extendable to 25 years subject to registration and conditions outlined under "Warranty" at silfabsolar.com

PAN files generated from 3rd party performance data are available for download at: silfabsolar.com/downloads



SILFAB SOLAR INC.

1770 Port Drive Burlington WA 98233 USA T +1 360.569.4733 info@silfabsolar.com SILFABSOLAR.COM

7149 Logistics Lane

Fort Mill SC 29715 USA **T** +1 839.400.4338

240 Courtneypark Drive East Mississauga ON L5T 2S5 Canada T +1 905.255.2501 F +1 905.696.0267

Silfab - SIL-490-HN+-20231221 No reproduction of any kind is allowed without permission. Data and information is subject to modifications without notice. It bab Solar Inc., 2022. Silfab Solar[®] is a registered trademark of Silfab Solar Inc.

# Three Phase Inverter with Synergy Technology

## For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS



## Powered by unique pre-commissioning process for rapid system installation

- Pre-commissioning feature for automated validation of system components and wiring during the site installation process and prior to grid connection
- Easy 2-person installation with lightweight, modular design (each inverter consists of 2 or 3 Synergy units and 1 Synergy Manager)
- Independent operation of each Synergy unit enables higher uptime and easy serviceability
- Built-in thermal sensors detect faulty wiring, ensuring enhanced protection and safety

- Built-in arc fault protection and rapid shutdown
- Built-in PID mitigation for maximized system performance
- Monitored* and field-replaceable surge protection devices, to better withstand surges caused by lightning or other events
- Built-in module-level monitoring with Ethernet or cellular communication for full system visibility



*Applicable only for DC and AC SPDs

solaredge.com

## / Three Phase Inverter with Synergy Technology

## For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS

R			SExxK-U		UNITS	
(		~				
	80000		100000	110000	120000	W
7						VA
$\mathbf{F}$		~				
5		1	/			+
		~				Vac
			1			Vac
7						Hz
$\mathbf{\lambda}$	96.5		120		14.3	Aac
7		~	1	1		A
6		~	Ye	es		
7		~	≤	3		%
5		~	/			
Ć		~				-
	140000 / 70000		175000 / 58300	210000	) / 70000	W
(	110000, 10000				210000770000	
7		~				Vdc
$\mathbf{F}$		~				Vdc
5	2 x 48.25	~	3 x 40		48.25	Adc
		~	Ye			
(			167kΩ sensitivity p	$^{\prime}$ kΩ sensitivity per Synergy Unit ⁽²⁾		
7						%
7	< 8	1		< 12		W
7		~				
7	2 x	RS4	85, Ethernet, Wi-Fi (	optional), Cellular (opti	onal)	
5		~				
	With the SetApp mo	bile	application using bu	uilt-in Wi-Fi access poir	it for local connection	
(	В	uilt-	n, User Configurable	e (According to UL1699	9B)	
7		~	NEC 2014 – 2	2023, built-in		
7		~	Nighttime	e, built-in		
4		~	Type II, field repla	ceable, integrated		
		~	Type II, field repla	ceable, integrated		
(			25A, int	egrated		
7			)			
7		~	) Buil	t-in		
7		~	5			
7	UL1699B,	UĽ			22.2#107.1,	
$\succ$		~		2		
5		~				+
		<ul> <li>140000 / 70000</li> <li>140000 / 70000</li> <li>2 x 48.25</li> <li< td=""><td>80000       96.5       96.5       140000 / 70000       140000 / 70000       2 x 48.25       3 x 48.25   <!--</td--><td>80000       100000         3W + PE,         VYE: TN-C, TN-S, TN         244 - 27         422.5 - 4         96.5         96.5         96.5         140000 / 70000         175000 / 58300         40000 / 70000         140000 / 70000         175000 / 58300         140000 / 70000         175000 / 58300         10         2 x 48.25         3 x 40         2 x 48.25         3 x 40         98         &lt; 8</td>         2 x 48.25         3 x 40         98         &lt; 8</td>         167kΩ sensitivity p         98         &lt; 8</li<></ul>	80000       96.5       96.5       140000 / 70000       140000 / 70000       2 x 48.25       3 x 48.25 </td <td>80000       100000         3W + PE,         VYE: TN-C, TN-S, TN         244 - 27         422.5 - 4         96.5         96.5         96.5         140000 / 70000         175000 / 58300         40000 / 70000         140000 / 70000         175000 / 58300         140000 / 70000         175000 / 58300         10         2 x 48.25         3 x 40         2 x 48.25         3 x 40         98         &lt; 8</td> 2 x 48.25         3 x 40         98         < 8	80000       100000         3W + PE,         VYE: TN-C, TN-S, TN         244 - 27         422.5 - 4         96.5         96.5         96.5         140000 / 70000         175000 / 58300         40000 / 70000         140000 / 70000         175000 / 58300         140000 / 70000         175000 / 58300         10         2 x 48.25         3 x 40         2 x 48.25         3 x 40         98         < 8	80000       100000       12000         3W + PE, 4W + PE       WYE: TN-C, TN-S, TN-C-S, TT, IT; Delta: IT         244 - 277 - 305       244 - 277 - 305         422.5 - 480 - 529       59.5 - 60 - 60.5         96.5       120       14         Yes       1         Yes       3         140000 / 70000       175000 / 58300       210000         Yes       42.5 - 480 - 529         96.5       120       14         Yes       43       14         Yes       40.85 to 1       140000 / 70000         140000 / 70000       175000 / 58300       210000         2 x 48.25       3 x 40       3 x         167kΩ sensitivity per Synergy Unit ⁽²⁾ 98.5         < 8	80000         100000         120000         120000           3W + PE, 4W + PE         3W + PE, 4W + PE         3W + PE, 4W + PE           1         244 - 277 - 305         422.5 - 480 - 529           422.5 - 480 - 529         59.5 - 60 - 60.5         96.5           96.5         120         144.3           1         Yes         53.5           96.5         120         144.3           1         Yes         53.5           1         Yes         53.5           140000 / 70000         175000 / 58300         210000 / 70000           Yes         1000         850 - 1000           2 x 48.25         3 x 40         3 x 48.25           Yes         167kΩ sensitivity per Synergy Unit(2)           98.5         < 12

(2) Where permitted by local regulations.

(3) For specifications of the optional communication options, visit the <u>Communication product page</u> or the <u>Knowledge Center</u> to download the relevant product datasheet.

## / Three Phase Inverter with Synergy Technology

## For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS

MODEL NUMBE	R		SE80KUS		SE100KUS	SE110KUS	SE120KUS	
APPLICABLE TO	INVERTERS WITH PART NUMB	ER			SExxK-USx8lxxxx			UNITS
INSTALLATION S	SPECIFICATIONS	C			)			
Number of Synergy Ur	Number of Synergy Units per Inverter		2		)	3		
Ac Max Conduit Size		7		~	2 1/2"			in
Max AWG Line / PE		7		4/0 / 1/0				
DC Max Conduit Size		7		~	1 x 3";	2 x 2"		in
	Multi-input (SExxK-USxxxxxZ4)	Z	8 / 4 pairs; 6-12 AWG	~	)	i		
DC Input Inverter/ Synergy Unit	Combined input (SExxK-USxxxxW4)	6	2 pairs / 1 pair, Max 2 AWG; copper or aluminum	<b>X</b> X	) Ma:	ninum		
Dimensions (H x W x D	))	5	,		/	: 10.75 / 558 x 328 x 273 2.4 x 11.6 / 360 x 560 x 2	95	in / mm
Weight		7		~	Synergy Un Synergy Mana	it: 70.4 / 32 ager: 39.6 / 18		lb / kg
Operating Temperature	Range	7		~	-40 to +140 /	-40 to +60 ⁽⁴⁾		°F/°C
Cooling		7		~	Fan (user re	eplaceable)		
Noise		5		~	<	67		dBA
Protection Rating				_	NEM	A 3R		
Mounting		(			Brackets	provided		

(4) For power de-rating information refer to the <u>Temperature Derating Technical</u> Note for North America

SolarEdge is a global leader in smart energy technology. By leveraging world-class engineering capabilities and with a relentless focus on innovation, SolarEdge creates smart energy solutions that power our lives and drive future progress.

SolarEdge developed an intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. The SolarEdge DC optimized inverter maximizes power generation while lowering the cost of energy produced by the PV system.

Continuing to advance smart energy, SolarEdge addresses a broad range of energy market segments through its PV, storage, EV charging, UPS, and grid services solutions.

at in ed ne es V,

- f SolarEdge
- ♥ @SolarEdgePV
- @SolarEdgePV
- SolarEdgePV
- in SolarEdge
- 🔀 www.solaredge.com/corporate/contact

## solaredge.com

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: May 8, 2024 DS-000020-NAM Subject to change without notice.

Cautionary Note Regarding Market Data and Industry Forecasts: This brochure may contain market data and industry forecasts from certain third-party sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

# solar<mark>edge</mark>



## PV power optimization at the module level The most cost-effective solution for commercial and large field installations

- Specifically designed to work with SolarEdge inverters
- High efficiency with module-level MPPT, for maximized system energy production and revenue, and fast project ROI
- Superior efficiency (99.5%)
- Balance of System cost reduction; 50% less cables, fuses, and combiner boxes, and over 2x longer string lengths possible

- Fast installation with a single bolt
- Advanced maintenance with module level monitoring
- Module level voltage shutdown for installer and firefighter safety
- Use with two PV modules connected in series or in parallel



## / Power Optimizer P605 / P650 / P701 / P730 / P801

Power Optimizer Module (Typical Module Compatibility)	P605 (for 1 x high power PV module)	P650 (for up to 2 x 60-cell PV modules)	P701 (for up to 2 x 60/120-cell PV modules)	P730 (for up to 2 x 72-cell PV modules)	P801 (for up to 2 x 72/144 cell PV modules)	
INPUT						
Rated Input DC Power ⁽¹⁾	605	650	700*	730**	800	W
Connection Method		Single inp	ut for series connected	modules		
Absolute Maximum Input Voltage (Voc at lowest temperature)	65	ç	96	1	25	Vdc
MPPT Operating Range	12.5 – 65	12.5	- 80	12.5	- 105	Vdc
Maximum Short Circuit Current per Input (lsc)	14.1	11	11.75	11**	12.5***	Adc
Maximum Efficiency			99.5			%
Weighted Efficiency			98.6			%
Overvoltage Capacity			I			
OUTPUT DURING OPERATION (POWER O	PTIMIZER CONNECTED	O TO OPERATING	SOLAREDGE INVER	TER		
Maximum Output Current			15			Adc
Maximum Output Voltage			80			Vdc
OUTPUT DURING STANDBY (POWER OPT	IMIZER DISCONNECTE	D FROM SOLARED	DGE INVERTER OR	SOLAREDGE INVE	RTER OFF	
Safety Output Voltage per Power Optimizer			1 ± 0.1			Vdc
STANDARD COMPLIANCE	1					1
EMC		FCC Part 15 C	lass B IEC61000-6-2, II	EC61000-6-3		
Safety		IE	C62109-1 (class II safety	/)		
RoHS			Yes			
Fire Safety		yb	E-AR-E2100-712:2013-(	)5		
INSTALLATION SPECIFICATIONS	ш					-
Compatible SolarEdge Inverters		Three F	hase Inverter SE16K &	larger		
Maximum Allowed System Voltage			1000	2		Vdc
Dimensions (W x L x H)	129 x 153 x 52 / 5.1 x 6 x 2	129 x 153 x 42	.5 / 5.1 x 6 x 1.7	129 x 153 x 49	.5 / 5.1 x 6 x 1.9	mm / in
Weight	1064 / 2.3	834	/ 1.8	933	/ 2.1	gr / lb
Input Connector		/	MC4 ⁽²⁾			
Input Wire Length	/	0.16 / 0.52		0.16 / 0.52,	, 0.9 / 2.95 ⁽³⁾	m / ft
Output Connector			MC4			
Output Wire Length	Portrait Orientation: 1.4 / 4.5	Portrait Orientation: 1.2 / 3.9	-	Portrait Orien	tation: 1.2 / 3.9	m / ft
			entation: 1.8 / 5.9		entation: 2.2 / 7.2	
Operating Temperature Range ⁽⁶⁾	/	-4	40 to +85 / -40 to +185	5		°C / °F
Protection Rating			IP68 / NEMA6P			
Relative Humidity	/		0 - 100			%

* For P701 models manufactured after work week 06/2020, the rated DC input is 740W.

** For P730 models manufactured after work week 06/2020, the rated DC input is 760W and the maximum lsc per input is 11.75A.

*** For P801 models manufactured in work week 40/2020 or earlier, the maximum Isc per input in 11.75A.

(1) The rated power of the module at STC will not exceed the Power Optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed.

(2) For other connector types, please contact SolarEdge.

(3) Longer input wire lengths are available for use with split junction box modules. For 0.9m/2.95ft order P730-xxxLxxx.
 (4) For ambient temperatures above +70°C / +158°F, power de-rating is applied. Refer to <u>Power Optimizers Temperature De-Rating Technical Note</u> for more details.

PV System Desig Inverter ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾	n Using a SolarEdge		400V Grid SE25K*, SE33.3K*		00V Grid 27.6K*		00V Grid 30K*	277/4 SE33.3k		
Compatible Power Optimizers		P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	
Minimum String	Power Optimizers	14	14	14	14	15	15	14	14	
Length	PV Modules	14	27	14	27	15	29	14	27	
Maximum String	Power Optimizers	30	30	30	30	30	30	30	30	
Length	PV Modules	30	60	30	60	30	60	30	60	
Maximum Continuou	is Power per String	11250		11625		12750		12750		W
Maximum Allowed Connected Power per String ⁽⁸⁾ (Permitted only when the difference in connected power between strings is 2,000W or less)		13500		13500		1	5000	15000		W
Parallel Strings of Dif	ferent Lengths or Orientations				Ye	25				
	in Number of Power Optimizers Allowed t and Longest String Connected to the				5 Power C	Optimizers				

* The same rules apply for Synergy units of equivalent power ratings that are part of the modular Synergy Technology Inverter.

(5) P650/P701/P730/P801 can be mixed in one string only with P650/P701/P730/P801. P605 cannot be mixed with any other Power Optimizer in the same string.

(6) For each string, a Power Optimizer may be connected to a single PV module if 1) each Power Optimizer is connected to a single PV module or 2) it is the only Power Optimizer connected to a

single PV module in the string.
(7) For SE16K and above, the minimum STC DC connected power should be 11KW.

(8) To connect more STC power per string, design your project using <u>SolarEdge Designer</u>.

## / Power Optimizer P800p / P850 / P950 / P1100

F000p7F0307F3.	,			$\mathbf{\gamma} \mathbf{\gamma} \mathbf{\gamma} \mathbf{\gamma} \mathbf{\gamma} \mathbf{\gamma} \mathbf{\gamma} \mathbf{\gamma} $	<u> </u>
Power Optimizer Module (Typical Module Compatibility)	P800p (for up to 2 x 96- cell 5" PV modules)	P850 (for up to 2 x high power or bi-facial modules)	P950 (for up to 2 x high power or bi- facial modules)	P1100 (for up to 2 x high power or bi-facial modules)	Ur
INPUT				×	
Rated Input DC Power ⁽¹⁾	800	850	950	> 1100	W
Connection Method	Dual input for independently connected	Single	input for series connected m	odules	
Absolute Maximum Input Voltage (Voc at lowest temperature)	83		125	>	Vc
MPPT Operating Range	12.5 - 83		12.5 – 105	<b>&gt;</b>	Vc
Maximum Short Circuit Current per Input (Isc)	7	14.1	k	14.1	Ac
Maximum Efficiency		9	9.5	_	%
Weighted Efficiency		9	8.6	×	9
Overvoltage Capacity				<b>&gt;</b>	
OUTPUT DURING OPERATION (POWE	R OPTIMIZER CONNECT	ED TO OPERATING SOLA	REDGE INVERTER	<b>•</b>	
Maximum Output Current			18		A
Maximum Output Voltage		8	30	<b>&gt;</b>	V
OUTPUT DURING STANDBY (POWER	OPTIMIZER DISCONNEC	TED FROM SOLAREDGE I	NVERTER OR SOLARED	E INVERTER OFF	
Safety Output Voltage per Power Optimizer		1 :	: 0.1		V
STANDARD COMPLIANCE					
EMC		FCC Part 15 Class B, IEC	61000-6-2, IEC61000-6-3	<b>&gt;</b>	
Safety		IEC62109-1 (	class II safety)	¥	
RoHS		Ŷ	'es		
Fire Safety		VDE-AR-E210	0-712:2013-05	×	
INSTALLATION SPECIFICATIONS				<b>&gt;</b>	
Compatible SolarEdge Inverters	Thi	ree Phase Inverter SE16K & larg	er	Three Phase Inverter SE25K & larger	
Maximum Allowed System Voltage		10	000	<b>&gt;</b>	V
Dimensions (W x L x H)	129 x 168 x 59 / 5.1 x 6.61 x 2.32		129 x 162 x 59 / 5.1 x 6.4 x 2.3	2	mm
Weight			/ 2.3	<b>&gt;</b>	gr ,
Input Connector			24 ⁽²⁾	<b>y</b>	
Input Wire Length	0.16 / 0.52	0.16 / 0.52, 0.9 / 2.95, 1.3 / 4.26, 1.6 / 5.24 ⁽³⁾	0.16 / 0.52, 1.3 / 4.26, 1.6 / 5.24 ⁽³⁾	0.16 / 0.52, 1.3 / 4.26 ⁽³⁾	m
Output Connector			C4	×	
Output Wire Length	Landscape Orientation:	Portrait Orientation: 1.2 / 3.9 Landscape Orient	2.4 / 7.8	m,	
	1.8 / 5.9		<b>&gt;</b>	00	
Operating Temperature Range ⁽⁴⁾			/ -40 to +185	La	°C
Protection Rating			NEMA6P	7	-
Relative Humidity		0 -	- 100	×	9

950 models manufactured in work week : 06/2020 or earlier, the maximum lsc per input is 12.5A. The manufacture code is india Example: S/N SJ0620A-xxxxxxx (work week 06 in 2020)

(1) The rated power of the module at STC will not exceed the Power Optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed. (2) For other connector types, please contact SolarEdge.

(3) Longer input wire lengths are available for use with split junction box modules. For 0.9m/2.95ft order P801/P850-xxxLxxx. For 1.3m/2.95ft order P850/P950/P1100 -xxxXxxx. For 1.6m/5.24ft order P850/P950-xxxYxxx). (4) For ambient temperatures above +70°C / +158°F, power de-rating is applied. Refer to Power Optimizers Temperature De-Rating Technical Note for more details.

PV System Desi Inverter ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾	ign Using a SolarEdge	230/400V Grid SE16K, SE17K	230/400V Grid SE25K*	230/400V Grid SE27.6K*	230/400V Grid SE30K*	230/400V Gri SE33.3K		277/480V Grid SE33.3K*, SE40K*	
Compatible Power Optimizers		P800p, P850, P950	P800p, P850, P950, P1100	P800p, P850, P950, P1100	P800p, P850, P950, P1100	P800p, P850, P95 P1100	٩	P800p, P850, P950, P1100	-
Minimum String	Power Optimizers	14	14	14	15	14	$\mathbf{F}$	14	
Length	PV Modules	27	27	27	29	27		27	
Maximum String	Power Optimizers	30	30	30	30	30	$\left( \right)$	30	-
Length	PV Modules	60	60	60	60	60	$\mathbf{F}$	60	
Maximum Continuo	ous Power per String	13500	13500	13950	15300	13500		15300	W
	Connected Power per String ⁽⁸⁾	1 string – 15750	1 string – 15750	1 string – 16200	1 string – 17550	2 strings or less 15750	5	2 strings or less – 17550	w
between strings is 2	en the difference in connected power 2,000W or less)	2 strings or more – 18500	2 strings or more – 18500	2 strings or more – 18950	2 strings or more – 20300	3 strings or more 18500	-	3 strings or more – 20300	W
Parallel Strings of D	Different Lengths or Orientations			Yes		(			
	ce in Number of Power Optimizers he Shortest and Longest String Same Inverter Unit			5 Power Op	otimizers	(	Ç		

* The same rules apply for Synergy units of equivalent power ratings that are part of the modular Synergy Technology Inverter.
 (5) P800p/P850/P950/P1100 can be mixed in one string only with P800p/P850/P950/P1100.

(6) For each string, a Power Optimizer may be connected to a single PV module if 1) each Power Optimizer is connected to a single PV module or 2) it is the only Power Optimizer connected to a single PV module in the string.

(7) For SE16K and above, the minimum STC DC connected power should be 11KW.

(8) To connect more STC power per string, design your project using <u>SolarEdge Designer</u>.

SolarEdge is a global leader in smart energy technology. By leveraging world-class engineering capabilities and with a relentless focus on innovation, SolarEdge creates smart energy solutions that power our lives and drive future progress.

SolarEdge developed an intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. The SolarEdge DC optimized inverter maximizes power generation while lowering the cost of energy produced by the PV system.

Continuing to advance smart energy, SolarEdge addresses a broad range of energy market segments through its PV, storage, EV charging, UPS, and grid services solutions.

at in ed ne es V,

- f SolarEdge
- ♥ @SolarEdgePV
- @SolarEdgePV
- SolarEdgePV
- in SolarEdge
- 🔀 www.solaredge.com/corporate/contact

## solaredge.com

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: December 29, 2022 DS-000012-ENG Subject to change without notice.

Cautionary Note Regarding Market Data and Industry Forecasts: This brochure may contain market data and industry forecasts from certain third-party sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

# solar<mark>edge</mark>



## **Accelerate Solar with Domestic Content**

IronRidge offers racking systems that use 100% domesticallyproduced components. Our products made in the United States include: XR10 Rails, XR100 Rails, HUG Roof Attachment, Comp Shingle Flashing, and the BX Ballasted System.

To meet the qualifying criteria for tax credit incentives, solar projects must use a combination of modules, MLPE and racking with a minimum aggregate threshold of 40% Domestic Content.

## Pathway to 40+



## NO NEED TO SETTLE

Pick reputable products that your crews like installing. Our offerings are listed to UL 2703 and UL 3741, tested rigorously, and manufactured to the highest quality standards.



### **DO YOUR HOMEWORK**

Are you a financier or work with one? Understand terms and definitions. Obtain letters from the manufacturer documenting their position to share with your tax and legal counsel.



### **STACK MANUFACTURERS**

Our partnerships with the leading inverter manufacturers allow multiple avenues for you to reach 40% in 2024 and 45% in 2025. See next page for the current list of domestic content.

## **Avoid the Pitfalls**



### **READ THE FINE PRINT**

Ensure you qualify. Only finance companies offering third-party-owned systems are eligible, not installation companies or homeowners. Consult a legal professional for guidance.

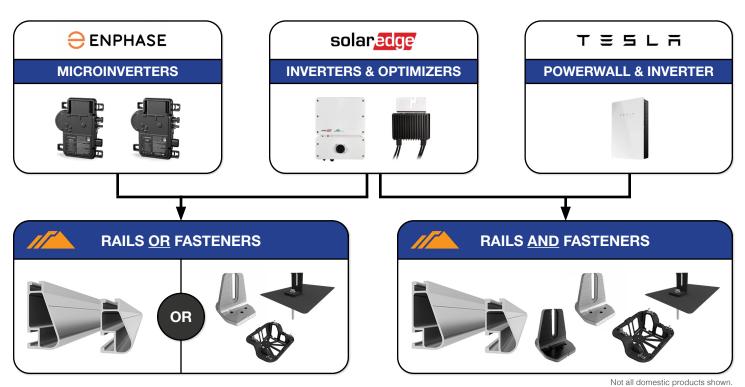


### **BE FULLY PREPARED**

Audits by Financiers, Commercial Project Owners, and the IRS are serious business. Ensure that your manufacturing partners can help you navigate any potential oversight.



### **STAY IN THE KNOW**


New information is coming out regularly. We promise to keep our customers posted. Scan the QR code below to visit our page dedicated to Domestic Content details.



Scan the QR code to visit our page dedicated to Domestic Content: IronRidge.com/DC

IronRidge does not provides tax, legal or accounting advice. This material has been prepared for informational purposes only and is not intended to be relied upon in place of professional advice. You should consult your own advisors before engaging in any that saction.

### Pathways to 40-45% Domestic Content



### **Residential Products**

Maker	Туре	Part Number
Enphase	Inverters	IQ8HC-72-M-DOM-US IQ8X-80-M-DOM-US IQ8HC-72-M-US
SolarEdge	Inverters	SE3800H-USMNUBL75 SE5700H-USMNUBL75 SE7600H-USMNUBL75 SE10000H-USMNUBL75 SE11400H-USMNUBL75 USE3800H-USMNUBL75 USE5700H-USMNUBL75 USE7600H-USMNUBL75 USE10000H-USMNUBL75
	Optimizers	U650-1GM4MRMU
Tesla	Inverters	1538000-45-X
IronPidgo	Rails	XR-10-168M-US XR-10-168B-US XR-100-168M-US XR-100-168B-US
IronRidge	Fasteners	LFT-FLSH03-B1-US FLSH-01-B1-US QM-HUG-01-M1-US QM-HUG-01-B1-US

## **Commercial Products**

Maker	Туре	Part Number			
Enphase	Inverters	IQ8P-3P-72-DOM-US			
	3-Phase Inverters	USE-SIN-USR0IBNx6			
ColorEdge	Synergy Managers	SE-DBL-US00IBNx6 SE-TRI-US00IBNx6			
SolarEdge	Synergy Units	USESUK-USROINNN6			
	Optimizer	C651U-1GMVMRRU C652U-1GMVMRRU			
	Rails & Fasteners	Same As Residential			
IronRidge	BX Ballasted System	BX-5D-P1 BX-10D-P1 BX-TCL-30MM-M1 BX-TCL-32MM-M1 BX-TCL-35MM-M1 BX-TCL-38MM-M1 BX-TCL-40MM-M1 BX-TCL-40MM-M1 BX-TCL-46MM-M1			

128







### Uniquely shaped for flat roofs.

IronRidge BX delivers superior power density and design flexibility to flat roof solar arrays. Made of a glassreinforced composite, the BX Chassis is engineered for extreme structural loading, yet is also shaped to be roof-friendly and easy to install.

Certified BX plan sets can be obtained instantly through an online Design Assistant or by contacting IronRidge Commercial Services.



### **Glass-Reinforced Composite**

Corrosion-free and engineered for long-term structural performance.



**Class A Fire Rating** Certified to maintain the fire resistance rating of the existing roof.



UL 2703 & 3741 Listed

Entire system and components meet the latest UL safety standards.

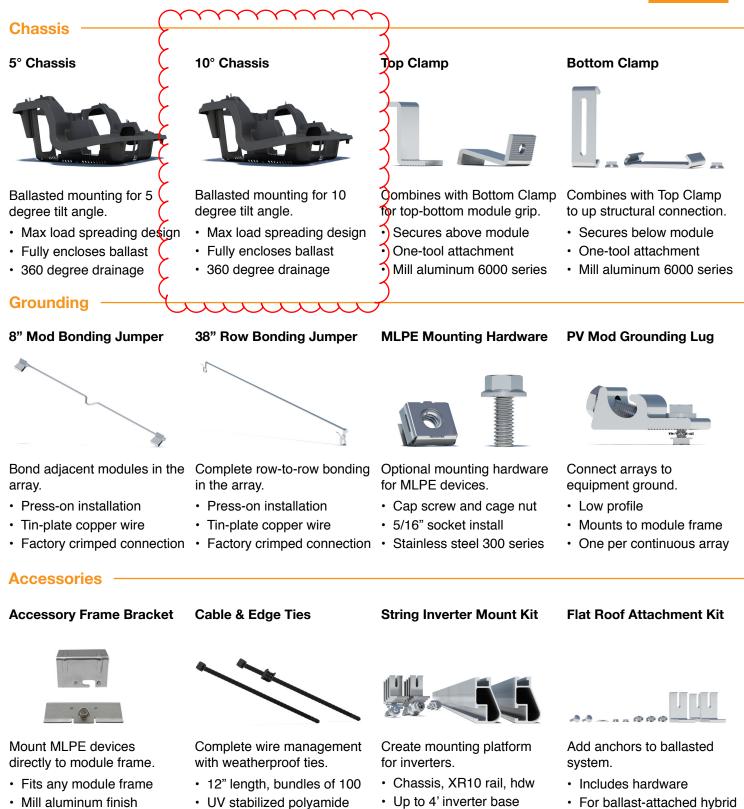


### **Commercial Services**

Engineering support to optimize system design.



### **Design Assistant**


Online software makes it simple to create, share, and price projects.



### 25-Year Warranty

Products guaranteed to be free of impairing defects.





UL 2703 listed

### Resources

- · Raises inverter off deck
- · Uses locally-sourced strut

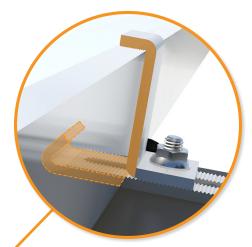


Go from rough layout to fully engineered system in minutes. Go to IronRidge.com

Black finish

Chassis Display #7 Recycle Label Like most glass-filled nylons, it is 100% recyclable-usually living on in furniture. Find more info at epa.gov/recycle




## **BX** Chassis

## Strong, Light, and Ready for Anything

The IronRidge BX System is designed to meet the needs of commercial solar—navigating complex roof layouts, while also handling the most extreme environmental conditions.

At the core of BX is the Chassis, a ballasted mount made of BASF Ultramid polyamides. They are exceptional for their high mechanical strength, rigidity and thermal stability (also being 100% recyclable).

Moreover, Ultramid polyamides afford good impact resistance even at low temperatures as well as UV protections for long life. Chassis come in 5° and 10° options and are backed by IronRidge's 25-year warranty.

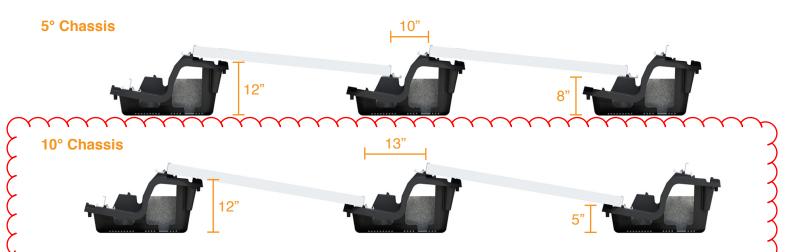


### **Top & Bottom Clamp**

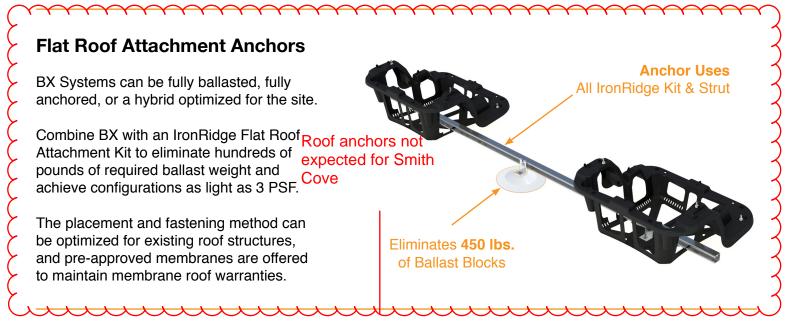
The multi-directional grip on the module from above and below ensures a strong connection regardless of force direction.

### 360° Reinforcement

A flange around the entire perimeter helps to reinforce and stiffen the Chassis in all directions—alongside wide bends to reduce point loading and braced corners to increase rigidity.


#### **Roof-Friendly Design**

Wide base spreads weight and reduces point pressure, while openings along the bottom and corners prevent pooling and reduce ballast weathering.






## **Inter-Row Spacing & Edge Clearances**



With 10-13" inter-row spacing, BX provides an 8-10% increase in power density compared with other ballasted systems—that's a capacity increase of 20% in a typical 50kW system. The BX Chassis geometry also offers more than 5" of clearance in the 10-degree configuration and 8" in the 5-degree configuration, enabling the system to avoid drain domes, roof saddles, and conduit supports.



## **Testing & Certification**

### **Design Assistant**

Automated design software provides an accurate bill of materials, using a simple drag-and-draw interface to generate a complete system plan—also generate a ballast map showing the required ballast for each Chassis.

### **Permit Documentation**

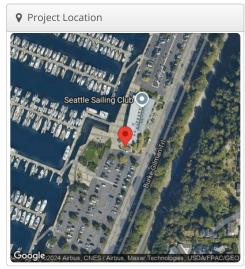
Design Assistant project reports are backed with a ASCE/PE stamp and Commercial Services are also available to assist with more complex projects. Visit our website or contact an IronRidge sales representative.

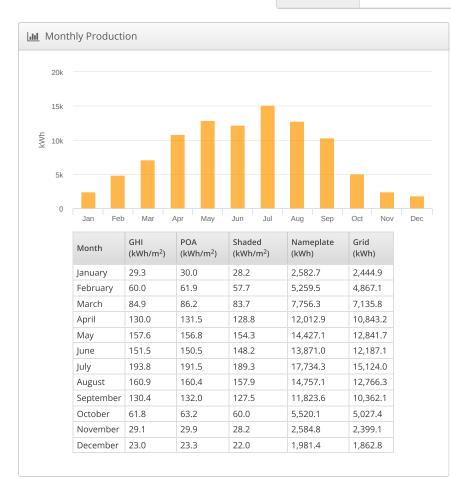
### UL 2703 & 3741 Listed

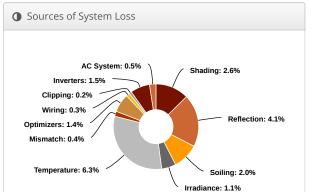
BX conforms to the latest UL safety standards for PV systems, including mechanical, bonding, hazard control, and Class A Fire Ratings (without wind deflectors). Ninety percent of solar modules are fully supported.



## Cost Estimate - T91-Smith Cove Cruise Terminal (303.8 kW-DC)


Item	Unit Cost	Qty	Co	st with Markup	\$/Watt		Source
PV Modules (Sil-490 HN)	\$ 404	620	\$	288,052	\$	0.95	Online price with 15% shipping and contractor markup
PV Racking (IronRidge 10degree BX Racking)	\$ 111,532	1	\$	128,262	\$	0.42	MSRP with 15% shipping and contractor markup
SolarEdge P1100 Optimizers	\$ 121	320	\$	44,528	\$	0.15	Online price with 15% shipping and contractor markup
SolarEdge SE80KUS Inverter (2x secondary units, 1x primary unit)	\$ 4,531	3	\$	15,632	\$	0.05	Online price with 15% shipping and contractor markup
Sub-Total Material Costs			\$	476,474	\$	1.57	
Item	Unit Cost	Qty		Cost	\$/Watt		
BOS (Conduit, cable, plumbing, etc.)	15%	-	\$	71,471	\$	0.24	Percentage of material costs based on project scope and complexity
Site Work (Trenching, pads, fence, sidewalk restoration, etc.)	\$ 15,000	1	\$	15,000	\$	0.05	Allowance based on project scope
Total Direct Costs			\$	562,945	\$	1.85	
Contractor Design, Engineering, Permitting	8%	-	\$	38,118	\$	0.13	Typical as percentage of material costs
Contractor PM	10%	-	\$	47,647	\$	0.16	Typical as percentage of material costs
Contractor Labor	20%	-	\$	95,295	\$	0.31	Typical as percentage of material costs, prevailing wage for ITC credits
Sales Tax (Battery Equipment Only)	10.3%	-	\$	-	\$	-	City of Seattle Sales Tax Inclusive of state rate
Sub-Total			\$	744,005	\$	2.45	
Contingency	10%	-	\$	74,401			Typical as percentage of subtotal construction costs
Sub-Total				818,406	\$	2.69	
Escalation to midpoint of 2025	2.0%	-		16,368			
Total Construction Costs				834,774	\$	2.75	
Port of Seattle - Maritime Overhead Premium	25.1%	-	\$	209,528			Overhead rate provided by Port Staff
Total Project Costs			\$	1,044,302	\$	3.44	
							-
System Size (W-DC)				303,800	Watts		


Appendix D Shilshole A-1 Documents


## A-1 Admin update final POS Solar - Shilshole Bay, shilshole marina

<b>⊮</b> Report					
Project Name	POS Solar - Shilshole Bay				
Project Address	shilshole marina				
Prepared By	Prepared By Sazan Group ses-marketing@sazan.com				
$\sum \overset{\ddot{A}}{\underset{G}{}{}{}{}{}{}{$	ZÄN roup				

LIII System Metrics							
Design	A-1 Admin update final						
Module DC Nameplate	99.0 kW						
Inverter AC Nameplate	80.0 kW Load Ratio: 1.24						
Annual Production	97.86 MWh						
Performance Ratio	81.2%						
kWh/kWp	988.7						
Weather Dataset	TMY, SEATTLE BOEING FIELD [ISIS], NSRDB (tmy3, II)						
Simulator Version	76d4770042-73948c4491- 816dd164e2-89ee8d06e4						

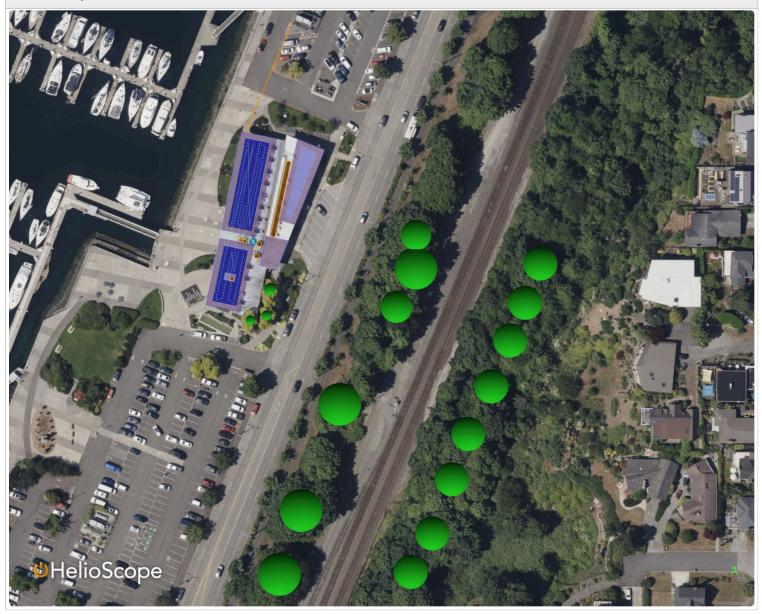






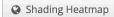
	Description	Output	% Delta		
	Annual Global Horizontal Irradiance	1,212.3			
	POA Irradiance	1,217.2	0.4%		
Irradiance	Shaded Irradiance	1,185.8	-2.6%		
(kWh/m²)	Irradiance after Reflection	1,137.6	-4.19		
	Irradiance after Soiling	1,114.8	-2.0%		
	Total Collector Irradiance	1,114.8	0.0%		
	Nameplate	110,311.0			
	Output at Irradiance Levels	109,089.9	-1.19		
	Output at Cell Temperature Derate	102,173.4	-6.3%		
_	Output After Mismatch	101,774.2	-0.4%		
Energy (kWh)	Optimizer Output	100,325.5	-1.49		
()	Optimal DC Output	100,050.1	-0.3%		
	Constrained DC Output	99,851.2	-0.29		
	Inverter Output	98,353.5	-1.5%		
	Energy to Grid	97,861.7	-0.5%		
Temperature	Metrics				
	Avg. Operating Ambient Temp		14.0 °(		
	Avg. Operating Cell Temp		27.6 °(		
Simulation Me	etrics				
	Or	erating Hours	426		
Solved Hours					

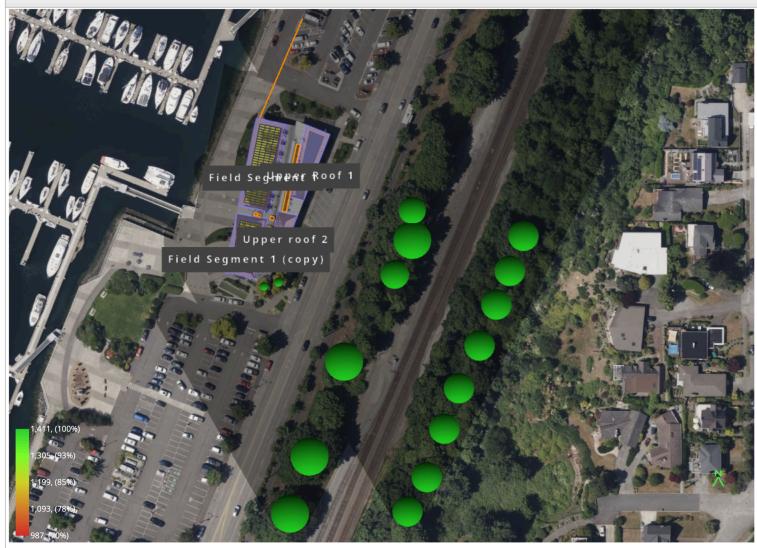
Condition Set														
Description	Con	Condition set 2 Ground (Boeing Field)												
Weather Dataset	TMY	TMY, SEATTLE BOEING FIELD [ISIS], NSRDB (tmy3, II)												
Solar Angle Location	Mete	eo La	t/Lng											
Transposition Model	Pere	z Mo	del											
Temperature Model	Sand	dia M	odel											
	Racl	< Туре	9		а		b			Те	mper	ature	Delta	
Temperature Model	Fixe	d Tilt			-3.	56	-0.	075		3°	С			
Parameters	Flus	h Mo	unt		-2.8	81	-0.	0455	5	0°	С			
	East-West				-3.	56	-0.	075		3°C				
	Carport -3			-3.	56	-0.075			3°C					
Soiling (%)	J	F	Μ	А	<b>\</b>	Μ	J	J		A	S	0	Ν	D
	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%													
Cell Temperature Spread	4° C													
Module Binning Range	-2.59	% to 2	2.5%											
AC System Derate	0.50	%												
Module	Module					Uploade By			ded Characte			erization		
Characterizations	SIL-490 HN (2022) (Silfab Solar)					Heli	cope Spec Sh Charact				eet erization, PAN			
	Dev	ice						Uploaded By Charac				harac	terization	
Component Characterizations	P11	00 (So	olarEd	ge)			HelioScope				N	Mfg Spec Sheet		
	SE8	OKUS	(2022)	) (S	olai	rEdge	)	Hel	ioSc	ope	S	pec Sl	neet	


🖨 Components							
Component	Name	Count					
Inverters	SE80KUS (2022) (SolarEdge)	1 (80.0 kW)					
Strings	10 AWG (Copper)	7 (1,323.5 ft)					
Optimizers	P1100 (SolarEdge)	104 (114.4 kW)					
Module	Silfab Solar, SIL-490 HN (2022) (490W)	202 (99.0 kW)					

🛔 Wiring Zones			
Description	Combiner Poles	String Size	Stringing Strategy
Wiring Zone	-	13-31	Along Racking

III Field Segments											
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power		
Field Segment 1	Flush Mount	Portrait (Vertical)	7.1780963°	101.41497°	0.0 ft	1x1	128	128	62.7 kW		
Upper Roof 1	Flush Mount	Portrait (Vertical)	4.632786°	282.74875°	0.0 ft	1x1			0		
Field Segment 1 (copy)	Flush Mount	Portrait (Vertical)	7.0554194°	101.73013°	0.0 ft	1x1	74	74	36.3 kW		
Upper roof 2	Flush Mount	Portrait (Vertical)	4.632°	280.64062°	0.0 ft	1x1			0		


136


### Oetailed Layout2



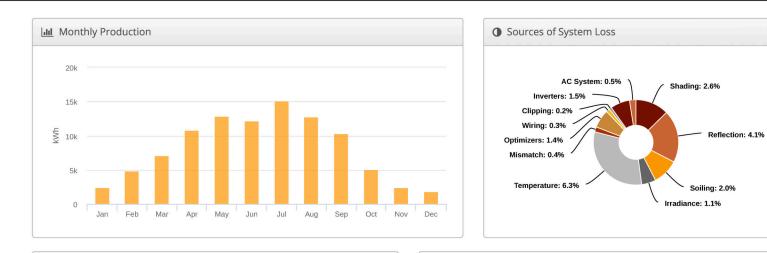
137

## A-1 Admin update final POS Solar - Shilshole Bay, shilshole marina





### III Shading by Field Segment

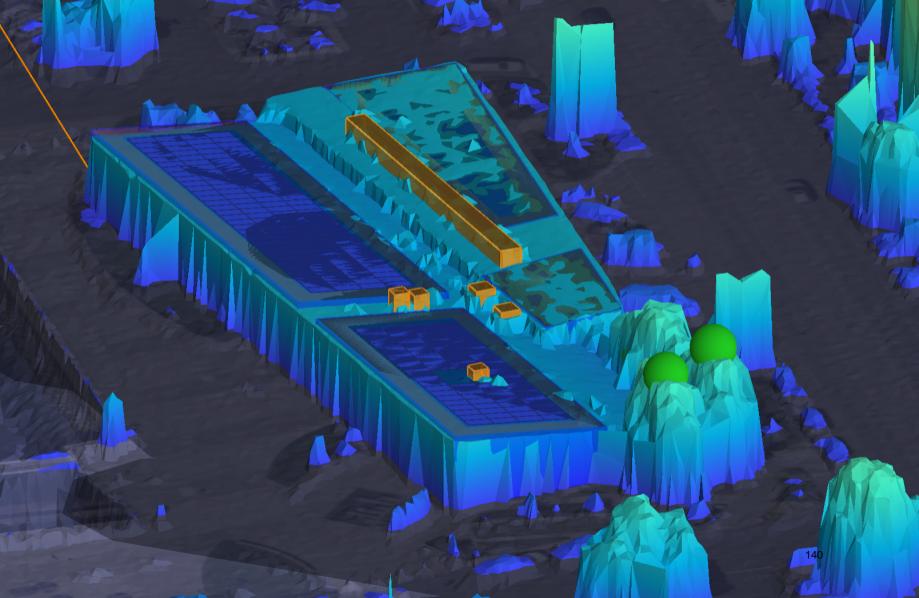

Description	Tilt	Azimuth	Modules	Nameplate	Shaded Irradiance	AC Energy	TOF ²	Solar Access	Avg TSRF ²
Field Segment 1	7.2°	101.4°	128	62.7 kWp	1,193.4kWh/m ²	62.4 MWh ¹	86.3%	98.1%	84.6%
Field Segment 1 (copy)	7.1°	101.7°	74	36.3 kWp	1,172.6kWh/m ²	35.5 MWh ¹	86.3%	96.3%	83.1%
Totals, weighted by kWp			202	99.0 kWp	1,185.8kWh/m ²	97.9 MWh	86.3%	97.4%	84.1%

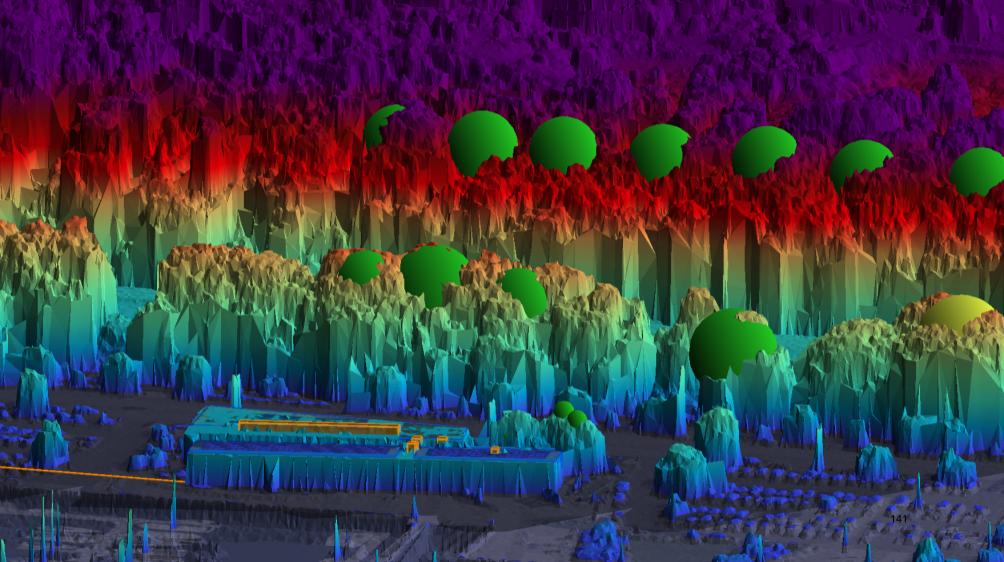
¹ approximate, varies based on inverter performance

² based on location Optimal POA Irradiance of 1,410.7kWh/m² at 35.4° tilt and 187.1° azimuth

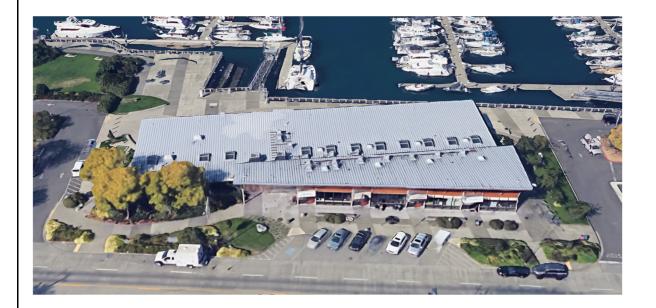
Solar Access by Month												
Description	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
Field Segment 1	95%	94%	98%	98%	99%	99%	99%	99%	97%	97%	95%	96%
Field Segment 1 (copy)	93%	91%	96%	97%	98%	98%	98%	97%	95%	92%	92%	93%
Solar Access, weighted by kWp	94.0%	93.2%	97.0%	98.0%	98.4%	98.5%	98.9%	98.4%	96.6%	94.9%	94.3%	94.5%
AC Power (kWh)	2,444.9	4,867.1	7,135.8	10,843.2	12,841.7	12,187.1	15,124.0	12,766.3	10,362.1	5,027.4	2,399.1	1,862.8

Shading Report produced by Sazan Group





Southwestern Angle




Southeastern Angle







# **5] TKDA**



Port of Seattle Solar Feasibility Assessment: Shilshole Bay Marina

7001 Seaview Ave NW #100, Seattle, WA 98117

**TKDA Project No. 24026** 

December 20th, 2024





# **Structural Calculation Index**

Calculation Section	Page No.
Structural Assessment Letter	1
Gravity Loading	
Vertical Gravity Weight Verification	
Seismic Weight Verification	
Design Load Verification	4
Snow Calculation for Drift Check	5
References	
ATC Hazard Report for Located Site	
Specification for PV array	7

#### December 20th, 2024

Jack Newman Säzän Consulting Services 600 Stewart Street, Suite 1400 Seattle, WA 98101



Re: Solar Feasibility Study Rooftop Photovoltaic Array

TKDA has performed a structural assessment of the Shilshole Bay Marina existing building structure in Seattle, WA to determine its ability to support the proposed rooftop PV array, including modules, racking, and associated equipment. This assessment is based on the as-built structural and architectural drawings provided by the Port of Seattle. The Shilshole Bay Marina building is composed of steel columns with a mix of steel and wood roof framing.

The results of our analysis show that the existing framing is sufficient to carry 3 psf weight under the footprint of the array. Section 503.3 of the 2021 Washington State IEBC states that any building alterations which cause an increase in design dead, live, or snow load of less than 5 percent do not require strengthening or modification of the affected members. The design snow load value shown on the general notes of the original building drawings is higher than the code prescribed snow load required at the roof. The result of the analysis show that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening. See calculations enclosed.

Per section 503.4 of the 2021 Washington State IEBC, building alterations resulting in a lateral load increase of less than 10 percent do not require strengthening or modification of the affected members. The total array weight is less than the maximum allowable array weight based on 10 percent of the original seismic weight tributary to the roof diagram thus no strengthening nor modifications are needed to the roof framing members.

In summary, the existing building structure is adequate to support the proposed rooftop PV array given its average weight of 3 psf underneath the footprint of the array. Please contact TKDA with any further questions.

Sincerely,

Daniel Munn, PE, SE Regional Vice President, Northwest Region Professional Engineer: WA, AZ, MD, MI, TX Project Name: Project Location: Building: Date: Port of Seattle Solar Feasibility Studies Seattle, WA Shilshole Bay Marina December 20th, 2024



**Governing Building Codes:** 

2021 Washington State IEBC ASCE 7-16

#### Vertical Gravity Weight Verification

#### **Original Design Loads Per Design Drawings:**

Load Case	<u>Magnitude</u>	<u>Comments</u>
Dead Load	15 psf	Assumed
Snow Load	25 psf	WABO, UBC 97

#### IEBC § 503.3:

"Any existing gravity load-carrying structural element for which an alteration causes an increase in design, dead, live, or snow load, including snow drift effects, of more than 5 percent shall be replaced or altered as needed to carry the gravity loads required by the International Building Code for new structures. Any existing gravity load-carrying structural element whose gravity-load carrying capacity is decreased as part of the alteration shall be shown to have the capacity to resist the applicable design dead, live and snow loads including snow drift effects required by the International Building Code for new structures"

#### Actual Loads

Load Case	Magnitude	<u>Comments</u>
Dead Load	15 psf	Assumed
Snow Load	Varies d.t. drift considerations	ASCE 7-16, See calculations
Actual Array Weight =	3 psf	

#### Actual Snow Load + Actual Array Weight < Original Design Snow Load

#### **Conclusions:**

The new solar array weight of 3 psf kips is less than the maximum allowable array weight of 15 psf kips based on a 10% increase per IEBC § 503.4. The results of the analysis shows that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening.



Project Name: Project Location: Building: Date: Port of Seattle Solar Feasibility Studies Seattle, WA Shilshole Bay Marina December 20th, 2024



**Governing Building Codes:** 

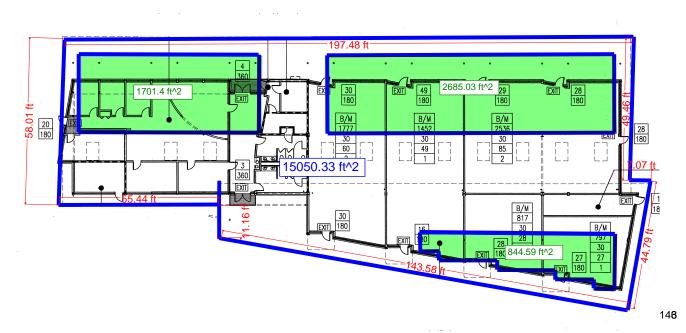
2021 Washington State IEBC ASCE 7-16

#### Seismic Weight Verification

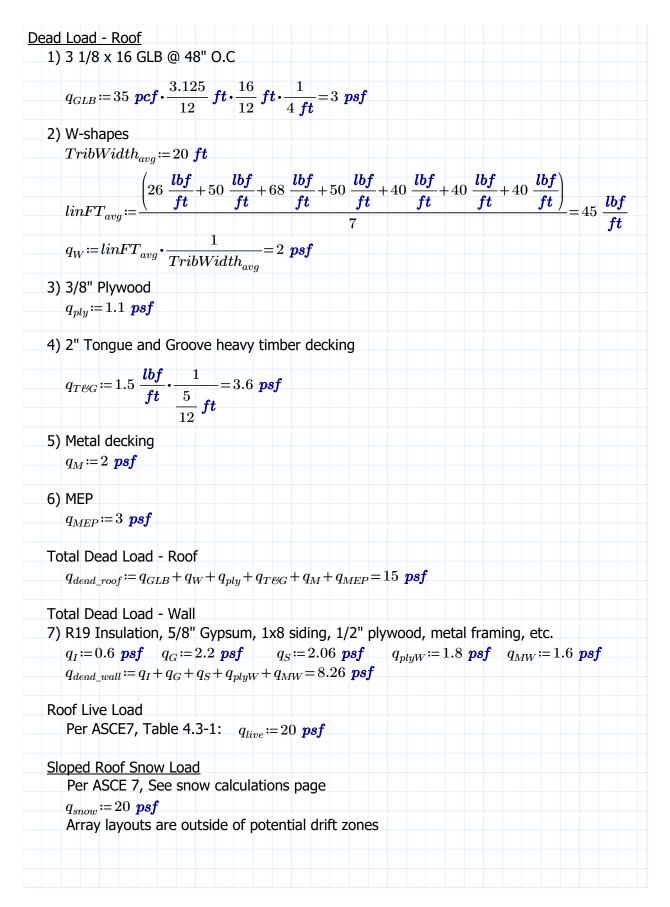
#### **Original Seismic Weight Calculation:**

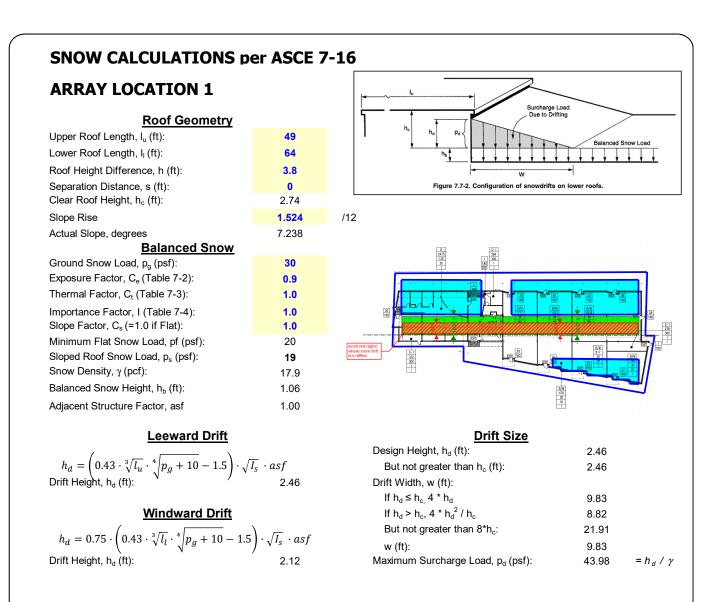
Item Description	Value	<u>Comments</u>
Roof Area =	14974 sf	Total roof area, determined from drawings
Roof DL =	15 psf	See calculations
1/2 Wall Area =	7277 sf	1/2 height of wall area, Determined from design drawings
Wall DL =	8 psf	See calculations
Weight Trib to Roof =	285 kips	

#### IEBC § 503.4:


"Any existing lateral load-carrying structural element whose demand-capacity ratio with the alteration considered is not more than 10 percent greater than its demand-capacity ratio with the alteration ignored shall be permitted to remain unaltered."

#### Allowable Weight Increase Calculation:


Item Description	<u>Value</u>	<u>Comments</u>
10% Increase Per IEBC § 503.4 =	28.6 kips	Maximum array weight
Typ. Weight of Array =	3 psf	Under footprint
Actual Array Weight	15.7 kips	
Actual Array Area	5231 sf	Determined from layouts
Max Allowable Array Area =	9533 sf	


#### **Conclusions:**

The new solar array weight of 15.7 kips is less than the maximum allowable array weight of 28.6 kips based on a 10% increase per IEBC § 503.4. The results of the analysis shows that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening.



#### **Design Load Verification**





Sloped Roof Results			
Sloped Roof Snow Load, p _s (psf):	19.0	psf	
Balanced Snow Height, h _b (ft):	1.1	ft	

Drift Results - Does not apply				
Drift Height, h _d	2.46 ft			
Drift Width, w	9.83 ft			
Maximum Surcharge Load, p _d	43.98 psf			

Page 1 of 1

	PROJECT	SAZAN	BY: WW	SHEET:
TVDA		SHILLSHOLE	CHKD:	PROJECT NO:
	TITLE	ARRAY LOCATION 1	DM	24026
		SNOW CALCULATION	DATE: 12/11/24	PAGE:



#### Search Information

Address:	7001 Seaview Ave NW Ste 100, Seattle, WA 98117	MGF S	15 ft s 2
Coordinates:	47.68068270000001, -122.4048252	ik	Styreline Secttle PRedmond
Elevation:	15 ft	in the	Seattle ^{oRedmond}
Timestamp:	2024-12-09T19:23:27.073Z	bic	Bremerton Renton
Hazard Type:	Snow	Forest Google	Kent Map data ©2024 Google Report a map error

ASCE 7-16	ASCE 7-10	ASCE 7-05	
Ground Snow Load A 20 lb/sqft	Ground Snow Load 🛄 🔺 15 lb/sqft	Ground Snow Load 🛕 15 lb/sqft	
The reported ground snow load applies at the query location of 15 feet up to a maximum elevation of 350 feet with a tolerance of 100 feet.	The reported ground snow load applies at the query location of 15 feet up to a maximum elevation of 400 feet.	The reported ground snow load applies at the query location of 15 feet up to a maximum elevation of 400 feet.	

Whidbey Everett

Island

National F

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

#### Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.



### • RELIABLE ENERGY. DIRECT FROM THE SOURCE.

Designed to outperform.

Dependable, durable, high-performance solar panels engineered for North American homeowners.



SILFABSOLAR.COM



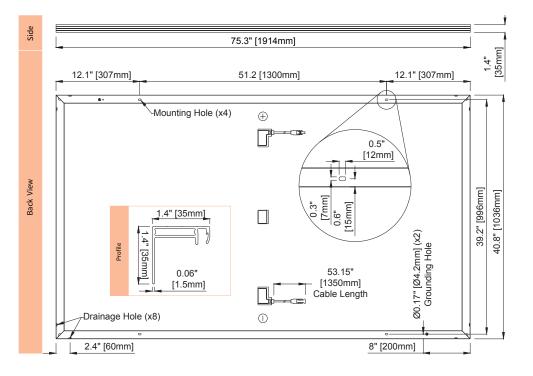
#### **PV Array Specifications**

ELECTRICAL SPECIFICATIONS		410		
Test Conditions		STC	NOCT	
Module Power (Pmax)	Wp	410	306	
Maximum power voltage (Vpmax)	V	38.99	36.24	
Maximum power current (Ipmax)	А	10.52	8.43	
Open circuit voltage (Voc)	V	45.59 42.76		
Short circuit current (Isc)	А	11.15	8.99	
Module efficiency	%	20.7%		
Maximum system voltage (VDC)	V	1000		
Series fuse rating	А	20		
Power Tolerance	Wp	0 to +10		

Measurement conditions: STC 1000 W/m² • AM 1.5 • Temperature 25 °C • NOCT 800 W/m² • AM 1.5 • Measurement uncertainty ≤ 3%

 $Sun simulator calibration reference modules from Fraunhofer Institute. Electrical characteristics may vary by \pm 5\% and power by 0 to +10W.$ **MECHANICAL PROPERTIES / COMPONENTS** METRIC IMPERIAL Module weight 21.3kg ±0.2kg 47lbs ±0.4lbs Dimensions (H x L x D) 1914 mm x 1036 mm x 35 mm 75.3 in x 40.8 in x 1.37 in 5400 Pa rear load / 5400 Pa front load 112.8 lb/ft² rear load / 112.8 lb/ft² front load Maximum surface load (wind/snow)* Hail impact resistance ø 25 mm at 83 km/h ø 1 in at 51.6 mph 132 Half cells - Si mono PERC 132 Half cells- Si mono PERC Cells 9 busbar - 83 x 166 mm 9 busbar - 3.26 x 6.53 in 3.2 mm high transmittance, tempered, 0.126 in high transmittance, tempered, Glass anti-reflective coating anti-reflective coating Cables and connectors (refer to installation manual) 1350 mm, ø 5.7 mm, MC4 from Staubli 53 in, ø 0.22 in (12AWG), MC4 from Staubli High durability, superior hydrolysis and UV resistance, multi-layer dielectric film, Backsheet fluorine-free PV backsheet Frame Anodized Aluminum (Black) 3 diodes-30SQ045T (45V max DC blocking voltage, 30A max forward rectified current) Bypass diodes UL 3730 Certified, IEC 62790 Certified, IP68 rated Junction Box **TEMPERATURE RATINGS** WARRANTIES Temperature Coefficient Isc +0.064 %/°C Module product workmanship warranty 25 years** Temperature Coefficient Voc -0.28 %/°C Linear power performance guarantee 30 years ≥ 97.1% end 1st yr ≥ 91.6% end 12th yr Temperature Coefficient Pmax -0.36 %/°C

NOCT (± 2°C) Operating temperature	45 °C -40/+85 °C	≥ 85.1% end 25th yr ≥ 82.6% end 30th yr		
CERTIFICATIONS			SHIPPING SPECS	
UL 61215-1:2017 Ed.1, UL 61215-2:2017 Ed.1, UL 61730-1:2017 Ed.1, UL 61730-2:2017 Ed.1, UC 61730-2:2017 Ed.1, CSA C22.2#61730-1:2019 Ed.2, CSA C22.2#61730-2:2019 Ed.2, IEC 61215-1:2016		Modules Per Palle	et: 26 or 26 (California)	
Product	Ed. 1, IEC 61215-2:2016 Ed. 1, IEC 61730-1:2016 Ed.2, IEC 61730-2:2016 Ed.2, IEC 61701:2020 (Salt Mist Corrosion), IEC 62716:2013 (Ammonia Corrosion), CEC Listing, UL Fire Rating: Type 2		Pallets Per Truck	32 or 30 (California)
Factory	ISO9001:2015		Modules Per Truc	k 832 or 780 (California)


A Warning. Read the Safety and Installation Manual for mounting specifications and before handling, installing and operating modules.

12 year extendable to 25 years subject to registration and conditions outlined under "Warranty" at silfabsolar.com.

45 °C

NOCT (± 2°C)

PAN files generated from 3rd party performance data are available for download at: silfabsolar.com/downloads.



#### **SILFAB SOLAR INC.**

1770 Port Drive Burlington WA 98233 USA T +1 360.569.4733 info@silfabsolar.com SILFABSOLAR.COM

7149 Logistics Lane Fort Mill SC 29715 USA T +1 839.400.4338

240 Courtneypark Drive East Mississauga ON L5T 2S5 Canada **T** +1 905.255.2501 F +1 905.696.0267





99kW ROOFTOP SOLAR PV ARRAY



E1.0

Drawn: JC Checked: TC 12/19/24 Date: Sheet Number:

Contents: ROOFTOP SOLAR PV MODULE LAYOUT

B23-24007 Project:

..\..\Port-of-Seattle-Logo-1.jpg

PORT OF SEATTLE

SHILSHOLE A-1

# DESCRIPTION DATE

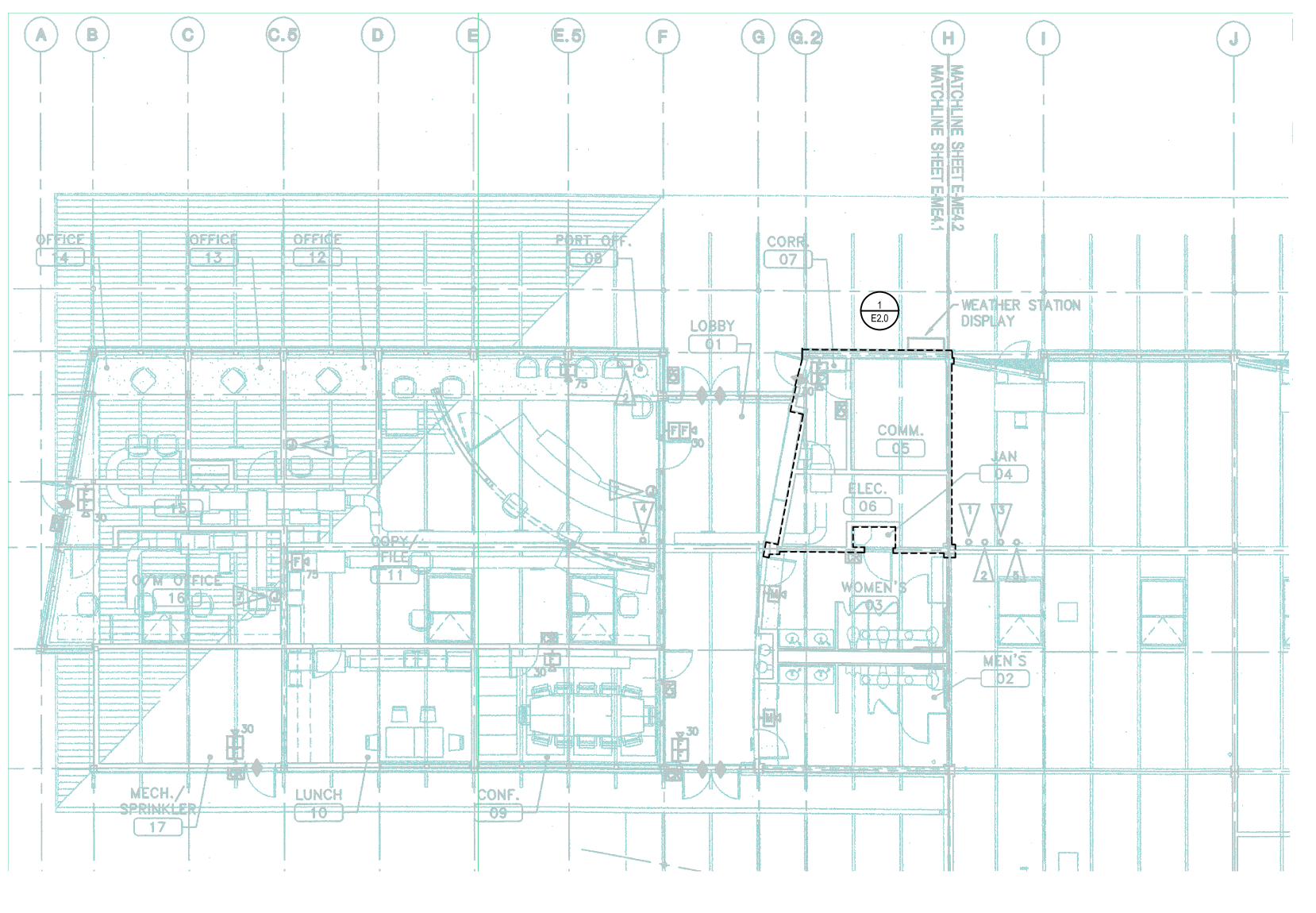
_____

_____ _____ _____ _____ _____ _____ _____

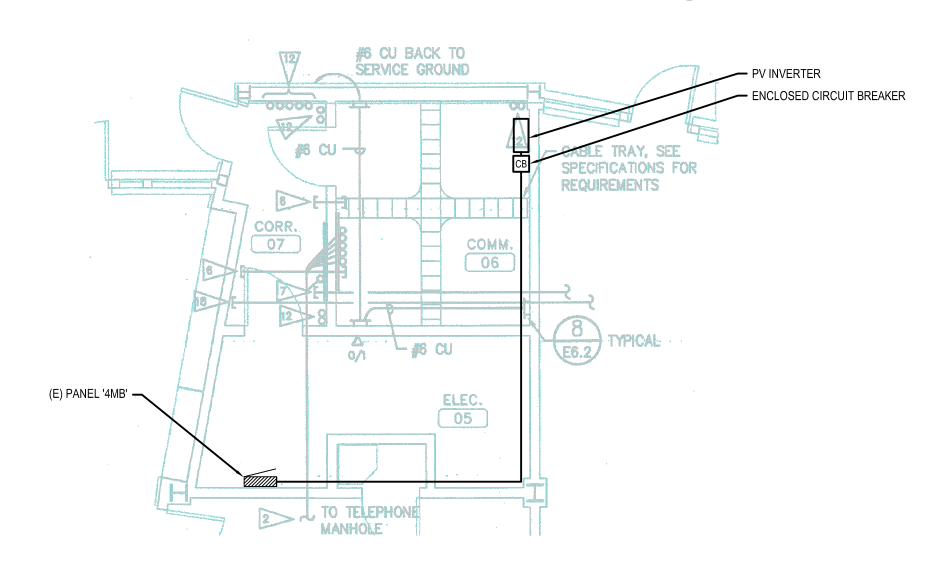
_____

_____ _____ _____

_____


600 Stewart St., Ste 1400 Seattle, Washington 98101 
 Tel
 206.267.1700

 Fax
 206.267.1701
 SAZAN # XXX-XXXXX


SÄZÄN

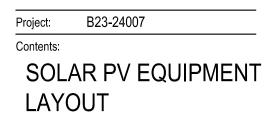
GROUP

— ROOFTOP SOLAR PV SEGMENT 1 128 MODULES (62.7 kW)



SOLAR PV EQUIPMENT LAYOUT - FIRST FLOOR SCALE: 1/8" = 1'0"

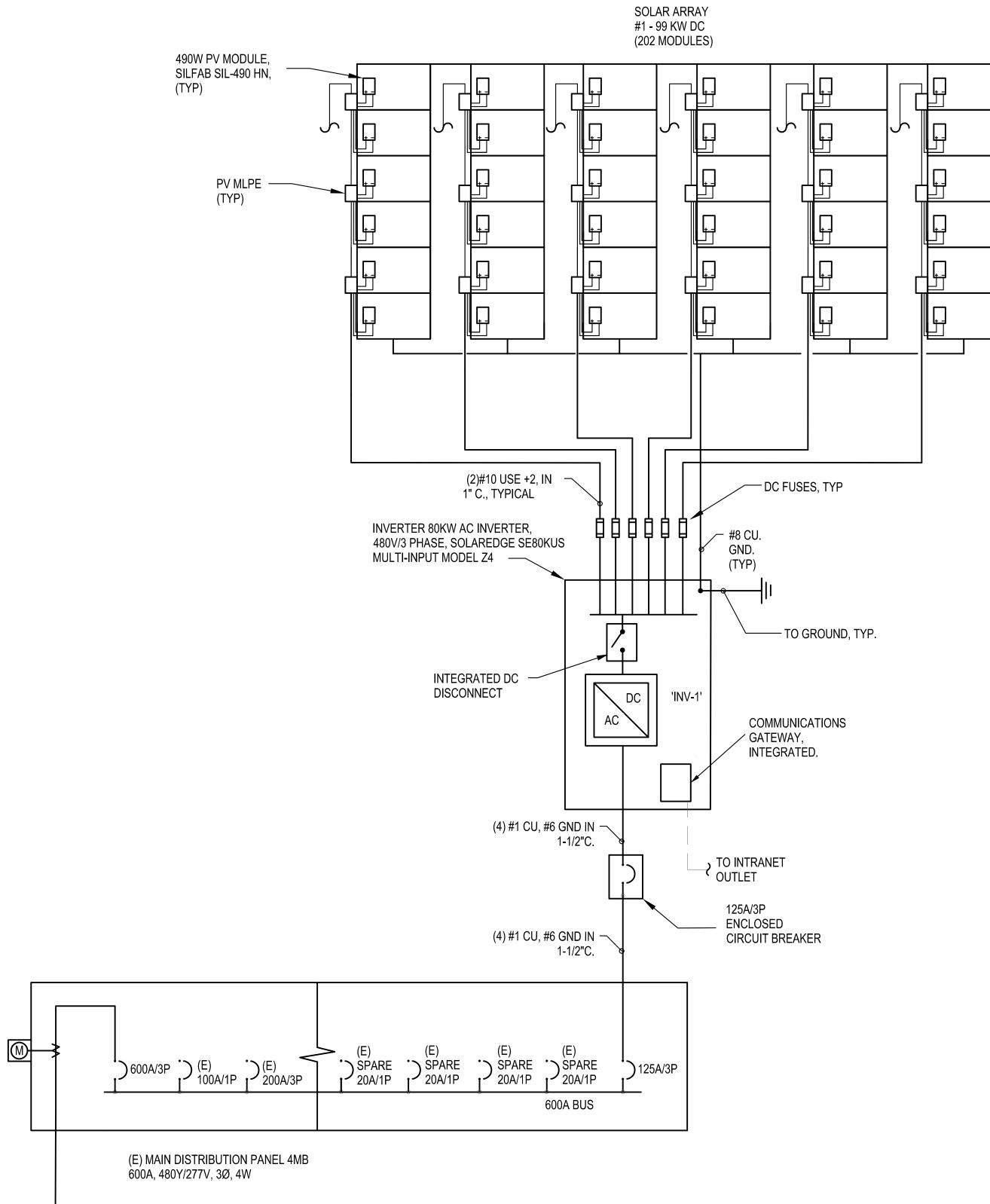



ENLARGED SOLAR PV EQUIPMENT LAYOUT - FIRST FLOOR SCALE: 1/4" = 1'0"



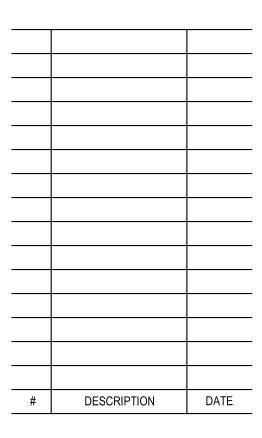


#	DESCRIPTION	DATE


SHILSHOLE A-1 PORT OF SEATTLE



.\.\Port-of-Seattle-Logo-1.jpg


Drawn: JC Checked: TC Date: 12/19/24 Sheet Number:





SOLAR PV SYSTEM - ONE LINE DIAGRAM SCALE: NTS

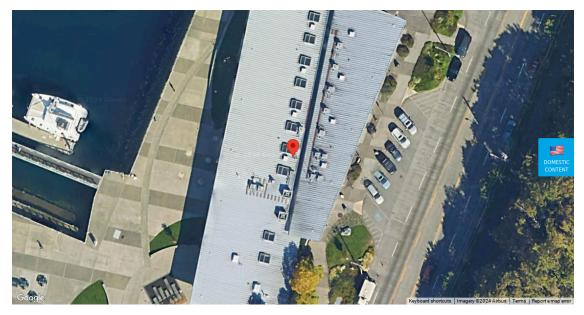




# SHILSHOLE A-1 PORT OF SEATTLE

..\..\Port-of-Seattle-Logo-1.jpg

Project: Contents: B23-24007


## SOLAR PV SYSTEM -ONELINE DIAGRAM

Drawn: JC Checked: TC 12/19/24 Date: Sheet Number:

**E3.0** 

#### IRONRIDGE 28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

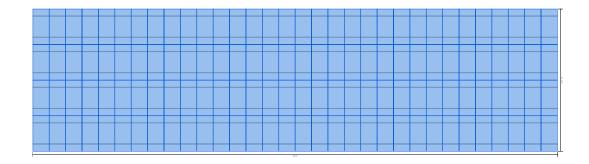
Project Details			
Name	Shilshole A-1	Date	12/06/2024
Location	7001 Seaview Avenue Northwest, Seattle, WA 98117	Total modules	202
Module	Silfab: SIL-490 HN (35mm)	Total watts	98,980
Dimensions	Dimensions: 89.09" x 40.83" x 1.38" (2263.0mm x 1037.0mm x 35.0mm)	Attachments	366
ASCE	7-16	Rails per row	2



System Weight	
Total system weight	12,798.3 lbs
Weight/attachment	35.0 lbs
Racking weight	1,308.5 lbs
Distributed weight	2.5 psf

Load Assumptions	
Wind exposure	С
Wind speed	98 mph
Ground snow load	20 psf
Attachment spacing portrait	4.0'
Site Elevation	321.0 ft
S _{DS}	1.051

#### **Roof Information**


Roof Material Family	Metal	Roof material	Standing Seam
Risk category	Ш	Roof attachment	Lynx with L-Foot
		Staggered attachments	Yes
Attachment hardware	T Bolt		
Roof shape	Gable		

Roof shape



Roof Plane A						
Height	30 ft	Slope	8 °	Rafter spacing		24 in
Roof Plane A: Roof Section 1	L					
Details					Weights	
Panels: 128		Provided rail: 896' [64 :	x 168"]		Total weight: 8,103.5 lbs	
Rail orientation: East-West		Attachments: 228		Weight/attachment: 35.5 lbs		
Panel orientation: Portrait		Splices: 64			Total Area: 3,284.9 sq ft	
Entry type: Graphical		Clamps: 240			Distributed weight: 2.5 psf	

#### Diagram



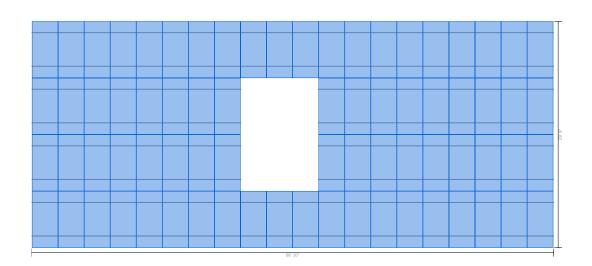
Segments

Identifier	Columns	Row length	Rail length	Cantilever	Rail	Attachments	Splices	Clamps
А	32	110' 3"	110' 2"	1' 2"	224' [16 x 168"]	57	16	60
			Row segment totals (x 4) $\rightarrow$		896' [64 x 168"]	228	64	240

#### Span Details XR100 - Portrait

Zone	Module Position	Max span	Max cantilever
Zone 1/2e	Normal	6' 10"	2' 9"
Zone 2n/2r/3e	Normal	6' 10"	2' 9"
Zone 3r	Normal	6' 10"	2' 9"

#### Reaction Forces XR100 - Portrait


Zone	Module Position	Uplift (PSF)	Down (lbs)	Uplift (lbs)	Lateral Par (lbs)	Lateral Perp (lbs)
Zone 1/2e	Normal	14.3	359	244	55	26
Zone 2n/2r/3e	Normal	19.5	359	346	55	26
Zone 3r	Normal	23.1	359	419	55	26



Root	FPlane A	: Roof	Section	2
------	----------	--------	---------	---

Noor Flanc A. Noor Geodor 2		
Details		Weights
Panels: 74	Provided rail: 532' [36 x 168", 4 x 84"]	Total weight: 4,694.8 lbs
Rail orientation: East-West	Attachments: 138	Weight/attachment: 34.0 lbs
Panel orientation: Portrait	Splices: 28	Total Area: 1,896.5 sq ft
Entry type: Graphical	Clamps: 136	Distributed weight: 2.5 psf

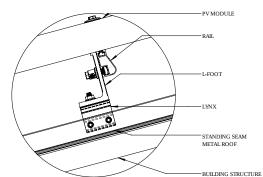
Diagram



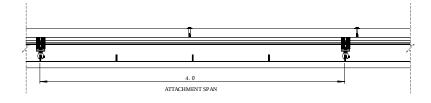
#### Segments

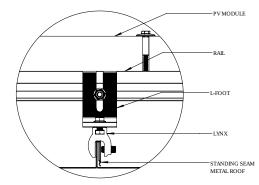
Identifier	Columns	Row length	Rail length	Cantilever	Rail	Attachments	Splices	Clamps
А	20	68' 10"	68' 10"	5"	140' [10 x 168"]	37	8	38
			Row seg	ment totals (x 2) $\rightarrow$	280' [20 x 168"]	74	16	76
В	8	27' 7"	27' 7"	1' 10"	56' [4 × 168"]	15	2	14
			Row seg	ment totals (x 2) $\rightarrow$	112' [8 x 168"]	30	4	28
С	9	31'	31'	1' 6"	70' [2 x 84", 4 x 168"]	17	4	16
			Row seg	ment totals (x 2) $\rightarrow$	140' [4 x 84", 8 x 168"]	34	8	32

#### Span Details XR100 - Portrait


Zone	Module Position	Max span	Max cantilever
Zone 1/2e	Normal	6' 10"	2' 9"
Zone 2n/2r/3e	Normal	6' 10"	2' 9"
Zone 3r	Normal	6' 10"	2' 9"

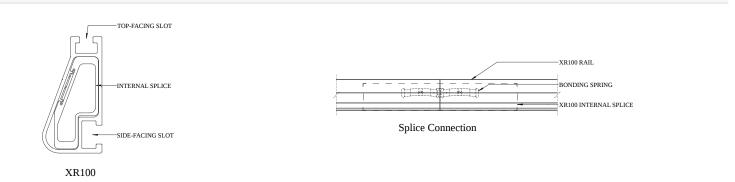
#### Reaction Forces XR100 - Portrait


Zone	Module Position	Uplift (PSF)	Down (lbs)	Uplift (lbs)	Lateral Par (lbs)	Lateral Perp (lbs)
Zone 1/2e	Normal	14.3	359	244	55	26
Zone 2n/2r/3e	Normal	19.5	359	346	55	26
Zone 3r	Normal	23.1	359	419	55	26

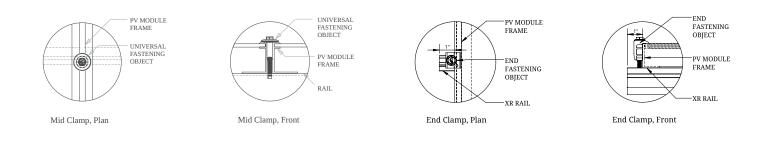

28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

Shilshole A-1 (#1405609) pitched roof




#### Front View (portrait)

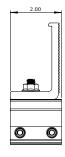






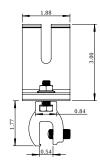

#### Splice Details




#### Clamp Detail



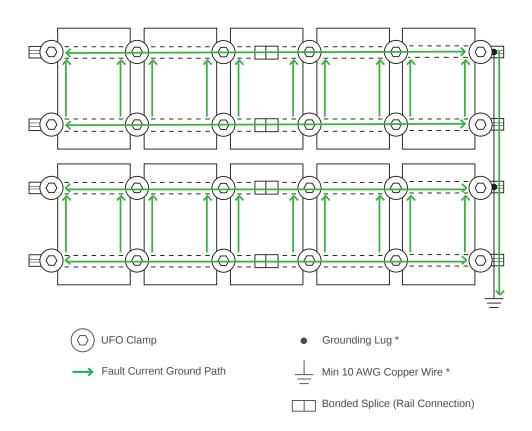

#### Lynx Standing Seam Metal Clamp




Plan View



Side View






Perspective View

Front View

#### Grounding Diagram



* Grounding Lugs and Wire are not required in systems using Enphase microinverters.

#### Bill of Materials

Part	Spares	Qty
Rails & Splices		
XR-100-168A XR-100, 168" (14) Clear * 2 x 168" rail to be cut on-site into 84" sections.	0	102
XR100-BOSS-01-M1 Bonded Splice, XR100	0	92
Clamps & Grounding		
UFO-CL-01-A1 Universal Module Clamp, Clear	0	376
UFO-END-01-A1 End Fastening Object (End Clamp, 30-40mm), Mill	0	56
XR-LUG-03-A1 Grounding Lug, Low Profile	0	10
Attachments		
QM-LYNX-SS-M1 Lynx Standing Seam Metal Clamp (incl. h/w)	0	366
LFT-03-M1 Slotted L-Foot, Mill	0	366
BHW-TB-03-A1 T-Bolt, Bonding Hardware	0	366

#### **ATTACHMENTS**

#### **PRE-INSTALLATION**

□ Verify module compatibility. See Page 21 for info.

#### **TOOLS REQUIRED**

Cordless Drill (non-impact)	3/8" Socket
Impact Driver (for lag bolts)	1/8" Drill Bit
Torque Wrench (0-250 in-lbs)	1/4" Drill Bit
7/16" Socket	T30 Bit
1/2" Socket	Channel Lock Pliers
9/16" Socket	#3 Phillips Bit
7/32" Drill Bit	3/16" Hex Bit

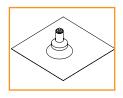
#### **BONDING HARDWARE TORQUE VALUES**

#### Please refer to each attachment's individual section for full details on all torque values and instructions.

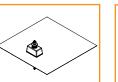
- 3/8" Bonding Hardware Nuts (7/16" Socket): 250 in-lbs
- All Tile Hook Carriage Bolts (7/16" Socket): 132 in-lbs
- Flat Roof Attachment Nuts (9/16" Socket): 250 in-lbs
- Lynx Set Screw (3/16" Hex Drive): 150 in-Ibs
- Lynx Flange Nut (1/2" Socket): 150 in-lbs


#### **ATTACHMENTS**

#### **COMPOSITION SHINGLE**







FlashVue



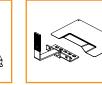
QM L-Mount



FlashFoot2






HUG (Halo UltraGrip)

QM QBase TILE

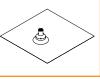




Mount



All Tile Hook and Flashing (optional)




QM Tile Conduit

Penetration

QM Quick Hook and QM QBase Tile Flashing (optional)

#### **ADDITIONAL ROOF TYPES**



۲

**QM Classic Mount** 





Flat Roof Attachment



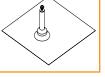


QM Lynx Metal Roof Attachment

If using previous version of Integrated Grounding Mid Clamps,	
End Clamps, Expansion Joints and for a list of approved 3rd party	
components please refer to Alternate Components Addendum	
(Version 1.9)	






QM Qbase Shake -Slate - Metal Shingle Shake











#### **COMPONENTS**



#### **PRE-INSTALLATION**

Verify module compatibility. See Page 21 for info.

#### **TOOLS REQUIRED**

Cordless Drill (non-impact)	1/8" Drill bit
Impact Driver (for lag bolts)	1/4" Drill bit
Torque Wrench (0-250 in-lbs)	T30 Torx Bit
7/16" Socket	Channel Lock Pliers
1/2" Socket	#3 Phillips Bit
9/16" Socket	Paddle Bit

7/32" Drill bit

#### **BONDING HARDWARE TORQUE VALUES**

Please refer to each attachment's individual section for full details on all torque values and instructions.

- Universal Fastening Object (7/16" Socket): 80 in-Ibs
- Rail Grounding Lug Nut (7/16" Socket): 80 in-lbs
- Module Grounding Lug
  - Grounding Nut (7/16" Socket): 60 in-Ibs
  - Grounding Lug Terminal Screws (7/16" Socket): 20 in-lbs
- Microinverter Kit Nuts (7/16" Socket): 80 in-lbs
- Frameless Module Kit Nuts (7/16" Socket): 80 in-lbs
- 3/8" Bonding Hardware Nuts (7/16" Socket): 250 in-lbs
- Contour Clamp (T-30 Torx Bit): 80 in-lbs


> Unless otherwise noted, all components have been evaluated for multiple use. They can be uninstalled and reinstalled in the same or new location.

#### COMPONENTS





Wire Clip



BOSS

Ironridge L-Foot and

QM L-Foot

XR Rail



Sleeve (30-46MM)

End Cap

Microinverter Kit

**QM Classic Conduit** 

Comp Mount

Ø














8" Bonding Jumper Single Use Only



**QM** Composition **Conduit Penetration** 



Frameless Module Kit





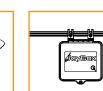
Contour Trim

Contour Clamp



Rail Grounding Lug






3/8" Bonding Hardware

JAYBOX

Frameless

End/Mid Clamp



### SILFAB COMMERCIAL



SIL-490 HN



# ENGINEERED FOR COMMERCIAL & UTILITY PROJECTS

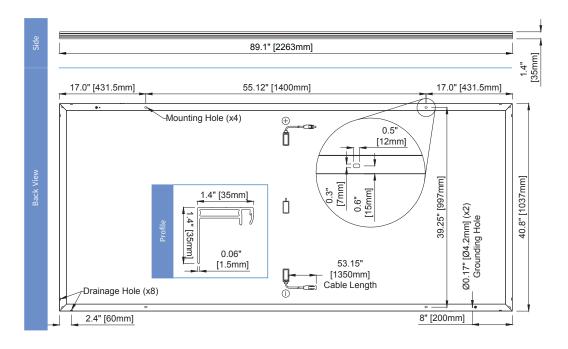
Superior performance and proven reliability from a trusted source.

SILFABSOLAR.COM





ELECTRICAL SPECIFICATIONS		490 HN					
Test Conditions		STC	NOCT				
Module Power (Pmax)	Wp	490	362				
Maximum power voltage (Vpmax)	V	45.23	41.61				
Maximum power current (Ipmax)	А	10.83	8.69				
Open circuit voltage (Voc)	V	53.96	49.64				
Short circuit current (Isc)	А	11.36	9.12				
Module efficiency	%	20.9%	19.3%				
Maximum system voltage (VDC)	V	1500					
Series fuse rating	А	20					
Power Tolerance	Wp	0 to	p +10				


Measurement conditions: STC 1000 W/m² • AM 1.5 • Temperature 25 °C • NOCT 800 W/m² • AM 1.5 • Measurement uncertainty ≤ 3% Sun simulator calibration reference modules from Fraunhofer Institute. Electrical characteristics may vary by ±5% and power by 0 to +10W.

MECHANICAL PROPERTIES / CO	PROPERTIES / COMPONENTS METRIC			IMPERIAL						
Module weight		25.8kg ±0.2kg	56.9lbs ±0.4lbs							
Dimensions (H x L x D)		2263 mm x 1037 mm x 35 mm	1	89 in x 40.8 in x 1.37 i	n					
Maximum surface load (wind/snow)*		2400 Pa rear load / 5400 Pa fro	ont load	50.1 lb/ft² rear load /	112.8 lb/ft ²	front load				
Hail impact resistance		ø 25 mm at 83 km/h		ø 1 in at 51.6 mph						
Cells		156 Half cells - Si mono PERC 9 busbar - 83 x 166 mm		156 Half cells- Si mor 9 busbar - 3.26 x 6.53						
Glass	ilass 3.2 mm high transm DSM antireflective of			0.126 in high transmi DSM antireflective co		pered,				
Cables and connectors (refer to install	ation manual)	1350 mm, ø 5.7 mm, MC4 fron	n Staubli	53.15 in, ø 0.22 in (12	AWG), MC4	from Staubli				
Backsheet				durability, superior hydrolysis and UV resistance, multi-layer dielectric film, ne-free PV white backsheet						
Frame		Anodized Aluminum (Silver)	r)							
Bypass diodes		3 diodes-30SQ045T (45V max	nax DC blocking voltage, 30A max forward rectified current)							
Junction Box		UL 3730 Certified, IEC 62790 C	Certified, IP68 rated							
TEMPERATURE RATINGS			WARRANTIES							
Temperature Coefficient Isc	+0.064 %/°C		Module product workmanship	**						
Temperature Coefficient Voc	-0.28 %/°C		Linear power performance guarantee 30 years							
Temperature Coefficient Pmax	-0.36 %/°C				≥97.1%	end 1st yr				
NOCT (± 2°C)	45 °C					end 12th yr end 25th yr				
Operating temperature	-40/+85 °C					end 30th yr				
CERTIFICATIONS				SHIPPING	SPECS					
Product			UL 61730-1/-2, IEC 61215-1/-2. IEC		Pallet:	31				
Product		rtifed, UL Fire Rating: Type 1	onia Corrosion; IEC61701:2011 Sal		Pallets Per Truck 23					
Factory	ISO9001:2015			Modules Per T	Modules Per Truck 713					

* A Warning. Read the Safety and Installation Manual for mounting specifications and before handling, installing and operating modules.

12 year extendable to 25 years subject to registration and conditions outlined under "Warranty" at silfabsolar.com

PAN files generated from 3rd party performance data are available for download at: silfabsolar.com/downloads



#### SILFAB SOLAR INC.

1770 Port Drive Burlington WA 98233 USA **T** +1 360.569.4733 info@silfabsolar.com SILFABSOLAR.COM

7149 Logistics Lane Fort Mill SC 29715 USA **T** +1 839.400.4338

240 Courtneypark Drive East Mississauga ON L5T 2S5 Canada T +1 905.255.2501 F +1 905.696.0267

Silfab - SIL-490-HN+-20231221 No reproduction of any kind is allowed without permission. Data and information is subject to modifications without notice: 164ab Solar Inc., 2022. Silfab Solar* is a registered trademark of Silfab Solar Inc.

# Three Phase Inverter with Synergy Technology

# For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS



#### Powered by unique pre-commissioning process for rapid system installation

- Pre-commissioning feature for automated validation of system components and wiring during the site installation process and prior to grid connection
- Easy 2-person installation with lightweight, modular design (each inverter consists of 2 or 3 Synergy units and 1 Synergy Manager)
- Independent operation of each Synergy unit enables higher uptime and easy serviceability
- Built-in thermal sensors detect faulty wiring, ensuring enhanced protection and safety

- Built-in arc fault protection and rapid shutdown
- Built-in PID mitigation for maximized system performance
- Monitored* and field-replaceable surge protection devices, to better withstand surges caused by lightning or other events
- Built-in module-level monitoring with Ethernet or cellular communication for full system visibility



*Applicable only for DC and AC SPDs



# / Three Phase Inverter with Synergy Technology

## For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS

MODEL NUMBER		SE80KUS	2	SE100KUS	SE110KUS	SE120KUS	
APPLICABLE TO INVERTERS WITH PART NUMBER		CABLE TO INVERTERS WITH PART NUMBER					UNITS
			フ				
Rated AC Active Output Power		80000	)	100000	110000	120000	W
Maximum AC Apparent Output Power	7	80000	7	100000	120000	120000	VA
AC Output Line Connections	X		イ	3W + PE,			
Supported Grids	4		く		-C-S, TT, IT; Delta: IT		
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-N)	(		ノ	244 – 27			Vac
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-L)	(		)	422.5 - 4			Vac
AC Frequency Min-Nom-Max ⁽¹⁾	۲		7	59.5 - 60			Hz
Maximum Continuous Output Current (per Phase, PF=1)	$\mathbf{k}$	96.5	イ	120		4.3	Aac
GFDI Threshold	4	50.5	く	120			A
Utility Monitoring, Islanding Protection, Configurable Power Factor, Country Configurable Thresholds	5		3	Ye	25		
Total Harmonic Distortion	$\mathbf{x}$		イ	2	3		%
Power Factor Range	4		イ	±0.85	i to 1		
INPUT	(		ス				
Maximum DC Power (Module STC) Inverter / Synergy Unit	$( \cdot )$	140000 / 70000	$\mathbf{J}$	175000 / 58300	210000	/ 70000	W
Transformer-less, Ungrounded	T		-)	Ye		,	
Maximum Input Voltage DC+ to DC-	7		1	100			Vdc
Operating Voltage Range	$\mathbf{x}$		イ	850 -			Vdc
Maximum Input Current	4	2 x 48.25	イ	3 x 40 3 x 48.25			Adc
Reverse-Polarity Protection	(		ノ	Yes			
Ground-Fault Isolation Detection	(		)	167kΩ sensitivity p			
CEC Weighted Efficiency	۲		7	98			%
Nighttime Power Consumption	X	< 8	イ		< 12		W
ADDITIONAL FEATURES	7		イ				
Supported Communication Interfaces ⁽³⁾	5	2 x R	34	85, Ethernet, Wi-Fi (c	optional), Cellular (optic	inal)	
Smart Energy Management	(		7	Export Li		- /	
Inverter Commissioning	(	With the SetApp mob	oile		ilt-in Wi-Fi access point	for local connection	
Arc Fault Protection	7		- \		e (According to UL1699)		
Photovoltaic Rapid Shutdown System	$\mathbf{x}$		イ	NEC 2014 – 2	ě.	- /	
PID Rectifier	4		イ	Nighttime			
RS485 Surge Protection (ports 1+2)	(		ノ	Type II, field replac			
AC, DC Surge Protection			$\rightarrow$	Type II, field replace			
DC Fuses (Single Pole)	7		7	25A, inte	*		
DC SAFETY SWITCH	7		7		- <u>y</u>		
DC Disconnect	7		イ	Built	t-in		
STANDARD COMPLIANCE	7		イ	500			1
	7	UL1699B, U	UK	741, UL1741 SA, UL17	741 SB, UL1998, CSA C2.	2.2#107.1,	
Safety	5		く	Canadian AFCI acco	*		
Grid Connection Standards	(		$\mathcal{L}$	IEEE 1547-2018, Ru	, , ,		
Emissions	(		_)	FCC part 1	15 class A		

(2) Where permitted by local regulations.

(3) For specifications of the optional communication options, visit the <u>Communication product page</u> or the <u>Knowledge Center</u> to download the relevant product datasheet.

# / Three Phase Inverter with Synergy Technology

## For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS

MODEL NUMBE	R		SE80KUS		SE100KUS	SE110KUS	SE120KUS	
APPLICABLE TO INVERTERS WITH PART NUMBE					SExxK-U	Sx8lxxxx		UNITS
INSTALLATION S	SPECIFICATIONS	(			)			
Number of Synergy Ur	nits per Inverter	(	2		)	3		
Ac Max Conduit Size		7		~	21	2"		in
Max AWG Line / PE		7		~	4/0 /	′ 1/0		
DC Max Conduit Size		7		~	1 x 3";	2 x 2"		in
	Multi-input (SExxK-USxxxxxZ4)	6	8 / 4 pairs; 6-12 AWG	~	)	12 / 4 pairs; 6-12 AWC	Ĵ	
DC Input Inverter/ Synergy Unit Combined input (SExxK-USxxxx		6	2 pairs / 1 pair, Max 2 AWG; copper or aluminum	X X	) Max	ninum		
Dimensions (H x W x D	))	5	,		y Unit: 22 x 12.9 x Janager: 14.17 x 22		in / mm	
Weight		7	Synergy Unit: 70.4 / 32 Synergy Manager: 39.6 / 18					lb / kg
Operating Temperature	Range	7		~	-40 to +140 /	-40 to +60 ⁽⁴⁾		°F/°C
Cooling		7		~	Fan (user re	placeable)		
Noise	loise		~	< 67			dBA	
Protection Rating					NEMA 3R			
Mounting		(			Brackets provided			

(4) For power de-rating information refer to the <u>Temperature Derating Technical</u> Note for North America

SolarEdge is a global leader in smart energy technology. By leveraging world-class engineering capabilities and with a relentless focus on innovation, SolarEdge creates smart energy solutions that power our lives and drive future progress.

SolarEdge developed an intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. The SolarEdge DC optimized inverter maximizes power generation while lowering the cost of energy produced by the PV system.

Continuing to advance smart energy, SolarEdge addresses a broad range of energy market segments through its PV, storage, EV charging, UPS, and grid services solutions.



- f SolarEdge
- У @SolarEdgePV
- @SolarEdgePV
- SolarEdgePV
- in SolarEdge
- 🔀 www.solaredge.com/corporate/contact

# solaredge.com

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: May 8, 2024 DS-000020-NAM Subject to change without notice.

Cautionary Note Regarding Market Data and Industry Forecasts: This brochure may contain market data and industry forecasts from certain third-party sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

# solar<mark>edge</mark>



### **PV power optimization at the module level** The most cost-effective solution for commercial and large field installations

- Specifically designed to work with SolarEdge inverters
- High efficiency with module-level MPPT, for maximized system energy production and revenue, and fast project ROI
- Superior efficiency (99.5%)
- Balance of System cost reduction; 50% less cables, fuses, and combiner boxes, and over 2x longer string lengths possible

- Fast installation with a single bolt
- Advanced maintenance with module level monitoring
- Module level voltage shutdown for installer and firefighter safety
- Use with two PV modules connected in series or in parallel



# / Power Optimizer P605 / P650 / P701 / P730 / P801

Power Optimizer Module (Typical Module Compatibility)	P605 (for 1 x high power PV module)	P650 (for up to 2 x 60-cell PV modules)	P701 (for up to 2 x 60/120-cell PV modules)	P730 (for up to 2 x 72-cell PV modules)	P801 (for up to 2 x 72/144 cell PV modules)				
INPUT					/				
Rated Input DC Power ⁽¹⁾	605	650	700*	730**	800	W			
Connection Method		Single input for series connected modules							
Absolute Maximum Input Voltage (Voc at lowest temperature)	65		96	1	25	Vdc			
MPPT Operating Range	12.5 – 65	12.5	- 80	12.5	- 105	Vdc			
Maximum Short Circuit Current per Input (lsc)	14.1	11	11.75	11**	12.5***	Adc			
Maximum Efficiency			99.5			%			
Weighted Efficiency			98.6			%			
Overvoltage Capacity			Ш						
OUTPUT DURING OPERATION (POWER O	PTIMIZER CONNECTED	TO OPERATING	SOLAREDGE INVER	RTER					
Maximum Output Current			15			Adc			
Maximum Output Voltage			80			Vdc			
OUTPUT DURING STANDBY (POWER OPT	IMIZER DISCONNECTE	D FROM SOLARE	OGE INVERTER OR	SOLAREDGE INVE	RTER OFF				
Safety Output Voltage per Power Optimizer			1 ± 0.1			Vdc			
STANDARD COMPLIANCE									
EMC		FCC Part 15 C	lass B, IEC6100-6-2, IE	EC61000-6-3					
Safety		IE	C62109-1 (class II safety	/)					
RoHS			fes						
Fire Safety		VD	E-AR-2100-712:2013-0	)5					
INSTALLATION SPECIFICATIONS									
Compatible SolarEdge Inverters		Three	hase Inverter SE16K &	larger					
Maximum Allowed System Voltage			1000	-		Vdc			
Dimensions (W x L x H)	129 x 153 x 52 / 5.1 x 6 x 2	129 x 153 x 42	.5 / 5.1 x 6 x 1.7	129 x 153 x 49	.5 / 5.1 x 6 x 1.9	mm / in			
Weight	1064 / 2.3	834	/ 1.8	933	/ 2.1	gr / lb			
Input Connector			MC4 ⁽²⁾						
Input Wire Length		0.16 / 0.52		0.16 / 0.52,	, 0.9 / 2.95 ⁽³⁾	m / ft			
Output Connector			MC4						
Output Wire Length	Portrait Orientation. 1.4 / 4.5	Portrait Orientation: 1.2 / 3.9	-		tation: 1.2 / 3.9	m / ft			
			entation: 1.8 / 5.9	· · · · ·	entation: 2.2 / 7.2				
Operating Temperature Range ⁽⁶⁾		-4	40 to +85 / -40 to +185	5		°C / °F			
Protection Rating	/		IP68 / NEMA6P						
Relative Humidity			0 - 100			%			

* For P701 models manufactured after work week 06/2020, the rated DC input is 740W.

** For P730 models manufactured after work week 06/2020, the rated DC input is 760W and the maximum lsc per input is 11.75A.

*** For P801 models manufactured in work week 40/2020 or earlier, the maximum Isc per input in 11.75A.

(1) The rated power of the module at STC will not exceed the Power Optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed.

(2) For other connector types, please contact SolarEdge.

(3) Longer input wire lengths are available for use with split junction box modules. For 0.9m/2.95ft order P730-xxxLxxx.
 (4) For ambient temperatures above +70°C / +158°F, power de-rating is applied. Refer to <u>Power Optimizers Temperature De-Rating Technical Note</u> for more details.

PV System Design Using a SolarEdge Inverter ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾ Compatible Power Optimizers			400V Grid SE25K*, SE33.3K*		00V Grid 27.6K*		400V Grid E30K*	277/4 SE33.3		
		P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	
Minimum String	Power Optimizers	14	14	14	14	15	15	14	14	
Length	PV Modules	14	27	14	27	15	29	14	27	
Maximum String	Power Optimizers	30	30	30	30	30	30	30	30	
Length	PV Modules	30	60	30	60	30	60	30	60	
Maximum Continuou	is Power per String	11250		11625		12750		12750		W
	onnected Power per String ⁽⁸⁾ e difference in connected power V or less)		13500	1	3500		15000	1:	5000	W
Parallel Strings of Dif	ferent Lengths or Orientations				Ye	S				
	in Number of Power Optimizers Allowed t and Longest String Connected to the			5 Power Optimizers						

* The same rules apply for Synergy units of equivalent power ratings that are part of the modular Synergy Technology Inverter.

(5) P650/P701/P730/P801 can be mixed in one string only with P650/P701/P730/P801. P605 cannot be mixed with any other Power Optimizer in the same string.

(6) For each string, a Power Optimizer may be connected to a single PV module if 1) each Power Optimizer is connected to a single PV module or 2) it is the only Power Optimizer connected to a

single PV module in the string.
(7) For SE16K and above, the minimum STC DC connected power should be 11KW.

(8) To connect more STC power per string, design your project using <u>SolarEdge Designer</u>.

## / Power Optimizer P800p / P850 / P950 / P1100

Power Optimizer Module (Typical Module Compatibility)	P800p (for up to 2 x 96- cell 5" PV modules)	P850 (for up to 2 x high power or bi-facial modules)	P950 (for up to 2 x high power or bi- facial modules)	P1100 (for up to 2 x high power or bi-facial modules)	Unit
INPUT			(		)
Rated Input DC Power ⁽¹⁾	800	850	950	1100	Jw.
Connection Method	Dual input for independently connected	Single	input for series connected	modules	5
Absolute Maximum Input Voltage (Voc at lowest temperature)	83		125		J/dc
MPPT Operating Range	12.5 - 83		12.5 - 105		Vdc
Maximum Short Circuit Current per Input (Isc)	7	14.1	*	14.1	Adc
Maximum Efficiency		9	9.5		2%
Weighted Efficiency		9	8.6		)%
Overvoltage Capacity			II		17
OUTPUT DURING OPERATION (POWE	R OPTIMIZER CONNECT	ED TO OPERATING SOLA	REDGE INVERTER		_ く
Maximum Output Current			18	· · · · · · · · · · · · · · · · · · ·	Adc
Maximum Output Voltage			80		Vdc
OUTPUT DURING STANDBY (POWER (	OPTIMIZER DISCONNEC	TED FROM SOLAREDGE I	NVERTER OR SOLAR	OGE INVERTER OFF	1
Safety Output Voltage per Power Optimizer		1 ±	± 0.1	•	Vdc
STANDARD COMPLIANCE			(		
EMC		FCC Part 15 Class B, IEC	61000-6-2, IEC61000-6-3		
Safety		IEC62109-1 (class II safety)			1
RoHS		Υ	/es	-	
Fire Safety		VDE-AR-E210	00-712:2013-05		
INSTALLATION SPECIFICATIONS			7		1
Compatible SolarEdge Inverters	Thr	Three Phase Inverter SE16K & larger			1
Maximum Allowed System Voltage		10	000		Vdc
Dimensions (W x L x H)	129 x 168 x 59 / 5.1 x 6.61 x 2.32		129 x 162 x 59 / 5.1 x 6.4 x 2.	.32	mm /
Weight		1064	4 / 2.3		g / I
Input Connector		M	C4 ⁽²⁾		く
Input Wire Length	0.16 / 0.52	0.16 / 0.52, 0.9 / 2.95, 1.3 / 4.26, 1.6 / 5.24 ⁽³⁾	0.16 / 0.52, 1.3 / 4.26, 1.6 / 5.24 ⁽³⁾	0.16 / 0.52, 1.3 / 4.26 ⁽³⁾	m/1
Output Connector		N	1C4	<u> </u>	
Output Wire Length	Portrait Orientation: 1.2 / 3.9 Landscape Orientation: Landscape Orientation: Landscape Orientation: 2.2 / 7.2			2.4 / 7.8	
Operating Temperature Range ⁽⁴⁾	1.8 / 5.9 -40 to +85 / -40 to +185				• <u>•</u>
Protection Rating			NEMA6P	· · · · · · · · · · · · · · · · · · ·	14
Relative Humidity			- 100		1%

* For P850/P950 models manufactured in work week 06/2020 or earlier, the maximum lsc per input is 12.5A. The manufacture code is indicated in the Power Optimized as Example: S/N SJ0620A-xxxxxxx (work week 06 in 2020)

(1) The rated power of the module at STC will not exceed the Power Optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed.

(2) For other connector types, please contact SolarEdge.

(3) Longer input wire lengths are available for use with split junction box modules. For 0.9m/2.95ft order P801/P850-xxxLxxx. For 1.3m/2.95ft order P850/P950/P1100 -xxxXxxx. For 1.6m/5.24ft order P850/P950-xxxYxxx).

(4) For ambient temperatures above +70°C / +158°F, power de-rating is applied. Refer to Power Optimizers Temperature De-Rating Technical Note for more details.

PV System Design Using a SolarEdge Inverter ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾		230/400V Grid SE16K, SE17K	230/400V Grid SE25K*	230/400V Grid SE27.6K*	230/400V Grid SE30K*	230/400V Grid SE33.3K	<b>\</b>	277/480V Grid SE33.3K*, SE40K*	
Compatible Power	Optimizers	P800p, P850, P950	P800p, P850, P950, P1100	P800p, P850, P950, P1100	P800p, P850, P950, P1100	P800p, P850, P950 P1100	۲	P800p, P850, P950, P1100	
Minimum String	Power Optimizers	14	14	14	15	14	$\mathbf{F}$	14	
Length	PV Modules	27	27	27	29	27	C	27	
Maximum String	Power Optimizers	30	30	30	30	30	(	30	-
Length	PV Modules	60	60	60	60	60	7	60	
Maximum Continuo	ous Power per String	13500	13500	13950	15300	13500	C	15300	W
Maximum Allowed Connected Power per String ⁽⁸⁾ (Permitted only when the difference in connected power between strings is 2,000W or less)		1 string – 15750	1 string – 15750	1 string – 16200	1 string – 17550	2 strings or less ₇ 15750	Ç	2 strings or less – 17550	W
		2 strings or more – 18500	2 strings or more – 18500	2 strings or more – 18950	2 strings or more – 20300	3 strings or more 18500	Ę	3 strings or more – 20300	VV
Parallel Strings of Different Lengths or Orientations Yes					C				
Maximum Difference in Number of Power Optimizers						(		-	
Allowed Between the Shortest and Longest String 5 Power Optimizers					۲		-		
							Y		

* The same rules apply for Synergy units of equivalent power ratings that are part of the modular Synergy Technology Inverter. (5) P800p/P850/P950/P1100 can be mixed in one string only with P800p/P850/P950/P1100.

(6) For each string, a Power Optimizer may be connected to a single PV module if 1) each Power Optimizer is connected to a single PV module or 2) it is the only Power Optimizer connected to a single PV module in the string.

(7) For SE16K and above, the minimum STC DC connected power should be 11KW.

(8) To connect more STC power per string, design your project using <u>SolarEdge Designer</u>.

X X SolarEdge is a global leader in smart energy technology. By leveraging world-class engineering capabilities and with a relentless focus on innovation, SolarEdge creates smart energy solutions that power our lives and drive future progress.

SolarEdge developed an intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. The SolarEdge DC optimized inverter maximizes power generation while lowering the cost of energy produced by the PV system.

Continuing to advance smart energy, SolarEdge addresses a broad range of energy market segments through its PV, storage, EV charging, UPS, and grid services solutions.

at in ed ne es V,

- f SolarEdge
- ♥ @SolarEdgePV
- @SolarEdgePV
- SolarEdgePV
- in SolarEdge
- 🔀 www.solaredge.com/corporate/contact

# solaredge.com

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: December 29, 2022 DS-000012-ENG Subject to change without notice.

Cautionary Note Regarding Market Data and Industry Forecasts: This brochure may contain market data and industry forecasts from certain third-party sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

# solar<mark>edge</mark>



### **Accelerate Solar with Domestic Content**

IronRidge offers racking systems that use 100% domesticallyproduced components. Our products made in the United States include: XR10 Rails, XR100 Rails, HUG Roof Attachment, Comp Shingle Flashing, and the BX Ballasted System.

To meet the qualifying criteria for tax credit incentives, solar projects must use a combination of modules, MLPE and racking with a minimum aggregate threshold of 40% Domestic Content.

# Pathway to 40+



#### **NO NEED TO SETTLE**

Pick reputable products that your crews like installing. Our offerings are listed to UL 2703 and UL 3741, tested rigorously, and manufactured to the highest quality standards.



#### **DO YOUR HOMEWORK**

Are you a financier or work with one? Understand terms and definitions. Obtain letters from the manufacturer documenting their position to share with your tax and legal counsel.



#### **STACK MANUFACTURERS**

Our partnerships with the leading inverter manufacturers allow multiple avenues for you to reach 40% in 2024 and 45% in 2025. See next page for the current list of domestic content.

# **Avoid the Pitfalls**



#### **READ THE FINE PRINT**

Ensure you qualify. Only finance companies offering third-party-owned systems are eligible, not installation companies or homeowners. Consult a legal professional for guidance.

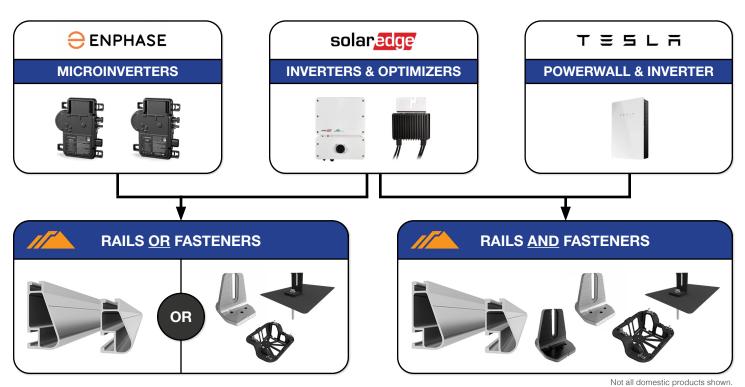


#### **BE FULLY PREPARED**

Audits by Financiers, Commercial Project Owners, and the IRS are serious business. Ensure that your manufacturing partners can help you navigate any potential oversight.



#### **STAY IN THE KNOW**


New information is coming out regularly. We promise to keep our customers posted. Scan the QR code below to visit our page dedicated to Domestic Content details.



Scan the QR code to visit our page dedicated to Domestic Content: IronRidge.com/DC

IronRidge does not provides tax, legal or accounting advice. This material has been prepared for informational purposes only and is not intended to be relied upon in place of professional advice. You should consult your own advisors before engaging in any transaction.

#### Pathways to 40-45% Domestic Content



#### **Residential Products**

Maker	Туре	Part Number
Enphase	Inverters	IQ8HC-72-M-DOM-US IQ8X-80-M-DOM-US IQ8HC-72-M-US
SolarEdge	Inverters	SE3800H-USMNUBL75 SE5700H-USMNUBL75 SE7600H-USMNUBL75 SE10000H-USMNUBL75 SE11400H-USMNUBL75 USE3800H-USMNUBL75 USE5700H-USMNUBL75 USE7600H-USMNUBL75 USE10000H-USMNUBL75
	Optimizers	U650-1GM4MRMU
Tesla	Inverters	1538000-45-X
IronRidge	Rails	XR-10-168M-US XR-10-168B-US XR-100-168M-US XR-100-168B-US
ironniuge	Fasteners	LFT-FLSH03-B1-US FLSH-01-B1-US QM-HUG-01-M1-US QM-HUG-01-B1-US

### **Commercial Products**

Maker	Туре	Part Number
Enphase	Inverters	IQ8P-3P-72-DOM-US
	3-Phase Inverters	USE-SIN-USR0IBNx6
ColorEdge	Synergy Managers	SE-DBL-US00IBNx6 SE-TRI-US00IBNx6
SolarEdge	Synergy Units	USESUK-USR0INNN6
	Optimizer	C651U-1GMVMRRU C652U-1GMVMRRU
	Rails & Fasteners	Same As Residential
IronRidge	BX Ballasted System	BX-5D-P1 BX-10D-P1 BX-TCL-30MM-M1 BX-TCL-32MM-M1 BX-TCL-35MM-M1 BX-TCL-38MM-M1 BX-TCL-40MM-M1 BX-TCL-40MM-M1 BX-TCL-46MM-M1

174





## XR Rail[®] Family

#### **Solar Is Not Always Sunny**

Over their lifetime, solar panels experience countless extreme weather events. Not just the worst storms in years, but the worst storms in 40 years. High winds capable of ripping panels from a roof, and snowfalls weighing enough to buckle a panel frame.

XR Rails[®] are the structural backbone preventing these results. They resist uplift, protect against buckling and safely and efficiently transfer loads into the building structure. Their superior spanning capability requires fewer roof attachments, reducing the number of roof penetrations and the amount of installation time.



Sloped roofs generate both vertical and lateral forces on mounting rails which can cause them to bend and twist. The curved shape of XR Rails[®] is specially designed to increase strength in both directions while resisting the twisting. This unique feature ensures greater security during extreme weather and a longer system lifetime.

#### **Compatible with Flat & Pitched Roofs**



XR Rails[®] are compatible with FlashFoot[®] and other pitched roof attachments.



IronRidge[®] offers a range of tilt leg options for flat roof mounting applications.

#### **Corrosion-Resistant Materials**

All XR Rails[®] are made of 6000-series aluminum alloy, then protected with an anodized finish. Anodizing prevents surface and structural corrosion, while also providing a more attractive appearance.



### XR Rail[®] Family

The XR Rail[®] Family offers the strength of a curved rail in three targeted sizes. Each size supports specific design loads, while minimizing material costs. Depending on your location, there is an XR Rail[®] to match.



### Rail Selection

The table below was prepared in compliance with applicable engineering codes and standards.* Values are based on the following criteria: ASCE 7-16, Gable Roof Flush Mount, Roof Zones 1 & 2e, Exposure B, Roof Slope of 8 to 20 degrees and Mean Building Height of 30 ft. Visit IronRidge.com for detailed certification letters.

Lo	ad	Rail Span					
Snow (PSF)	Wind (MPH)	4'	5' 4"	6'	8'	10'	12'
	90						
Nana	120						
None	140	XR10		XR100		XR1000	
$\sim$	~~160~~	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$
	90			←		ASCE Conditio	
	120					20PSF Snow,	98MPH Wind
20	140						
	160						
	90						
30	160						
40	90						
40	160						
80	160						
120	160						

*Table is meant to be a simplified span chart for conveying general rail capabilities. Use approved certification letters for actual design guidance.

176



# S-5-Z Clamp

The S-5-Z clamp is specially developed to fit profiles having a round "bulb" seam configuration. Its two-piece design allows it to be easily installed anywhere along the length of the rib. The S-5-Z is perfect for use with S-5![®] ColorGard[®] snow retention system and other heavyduty applications.

Installation is as simple as placing the clamp on the seam, positioning the insert piece, and tightening the patented round-point setscrews to the specified tension. Then, affix ancillary items using the bolt provided. Go to www.S-5.com/tools for information and tools available for properly attaching and tensioning S-5! clamps.

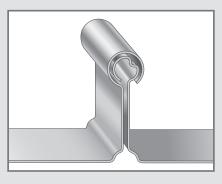
### S-5-Z Mini Clamp

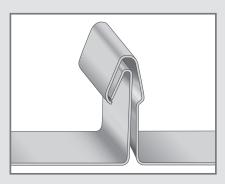
The right way to attach almost anything to metal roofs!

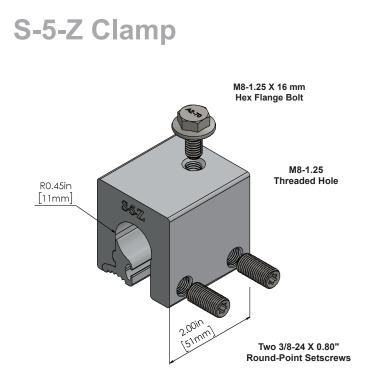
The S-5-Z Mini is a medium-duty, non-penetrating seam clamp and is a bit shorter than the S-5-Z and has one setscrew rather than two. The mini is the choice for attaching all kinds of rooftop accessories: signs, walkways, satellite dishes, antennas, rooftop lighting, lightning protection systems, solar arrays, exhaust stack bracing, conduit, condensate lines, mechanical equipment—just about anything!*

*S-5! mini clamps are not compatible with, and should not be used with, S-5! SnoRail[™]/SnoFence[™] or ColorGard[®] snow retention systems. The S-5-Z clamp is specially developed to fit profiles having a round "bulb" seam configuration.

177

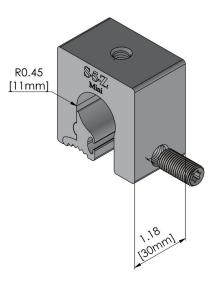




The strength of the S-5-Z clamp is in its simple design. The patented setscrews will slightly dimple the metal seam material but will not puncture it—leaving roof warranties intact.


The **S-5-Z and S-5-Z Mini clamps** are each furnished with the hardware shown to the right. Each box also includes a bit tip for tightening setscrews using an electric screw gun. A structural aluminum attachment clamp, the S-5-Z is compatible with most common metal roofing materials excluding copper. All included hardware is stainless steel. Please visit **www.S-5.com** for more information including CAD details, metallurgical compatibilities, and specifications.

The S-5-Z clamp has been tested for load-to-failure results on a variety of bulb shaped standing seam roof profiles from leading manufacturers of panels. The independent lab test reports found on our website at www.S-5.com prove that S-5![®] holding strength is unmatched in the industry.

### **Example Profiles**








### S-5-Z Mini Clamp

Distributed by



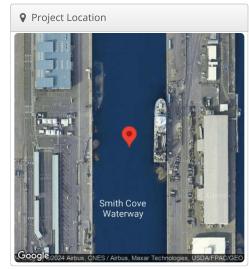
Please note: All measurements are rounded to the second decimal place.

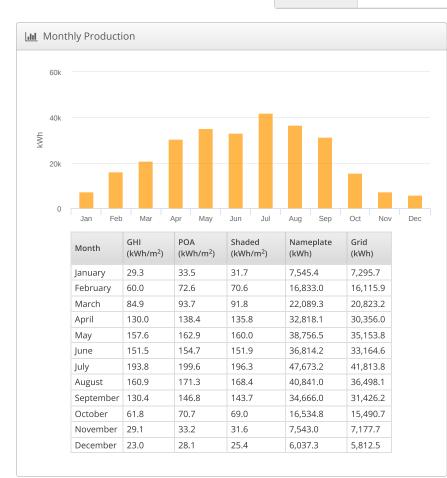
#### S-5!® Warning! Please use this product responsibly!

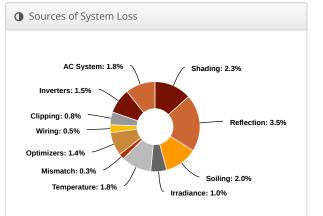
Products are protected by multiple U.S. and foreign patents. Visit the website at www.S-5.com for complete information on patents and trademarks. For maximum holding strength, setscrews should be tensioned and re-tensioned as the seam material compresses. Clamp setscrew tension should be verified using a calibrated torque wrench between 160 and 180 inch pounds when used on 22ga steel, and between 130 and 150 inch pounds for all other metals and thinner gauges of steel. Consult the S-5! website at www.S-5.com for published data regarding holding strength.

Copyright 2021, Metal Roof Innovations, Ltd. S-5! products are patent protected. S-5! aggressively protects its patents, trademarks, and copyrights. Version 081721.

### Cost Estimate - Shilshole Bay Marina - A-1 Admin Building (99.0 kW-DC)


Item	Unit Cost	Qty	Cos	t with Markup	\$/Watt		Source
PV Modules (Sil-490 HN)	\$ 404	202	\$	93,849	\$	0.95	Online price with 15% shipping and contractor markup
PV Racking (IronRidge Flush Mount XR)	\$ 18,744	1	\$	21,556	\$	0.22	MSRP with 15% shipping and contractor markup
SolarEdge P1100 Optimizers	\$ 121	104	\$	14,472	\$	0.15	Online price with 15% shipping and contractor markup
SolarEdge SE80KUS Inverter (2x secondary units, 1x primary unit)	\$ 4,531	1	\$	5,211	\$	0.05	Online price with 15% shipping and contractor markup
Sub-Total Material Costs			\$	135,088	\$	1.36	
Item	Unit Cost	Qty		Cost	\$/Watt		
BOS (Conduit, cable, plumbing, etc.)	15%	-	\$	20,263	\$	0.20	Percentage of material costs based on project scope and complexity
Site Work (Trenching, pads, fence, sidewalk restoration, etc.)	\$ -	1	\$	-	\$	-	Allowance based on project scope
Total Direct Costs			\$	155,351	\$	1.57	
Contractor Design, Engineering, Permitting	8%	-	\$	10,807	•		Typical as percentage of material costs
Contractor PM	10%	-	\$	13,509			Typical as percentage of material costs
Contractor Labor	20%	-	\$	27,018	\$	0.27	Typical as percentage of material costs, prevailing wage for ITC credits
Sales Tax (Battery Equipment Only)	10.3%	-	\$	-	\$	-	City of Seattle Sales Tax Inclusive of state rate
Sub-Total			\$	206,684	\$	2.09	
Contingency	10%	-	\$	20,668			Typical as percentage of subtotal construction costs
Sub-Total				227,353	\$	2.30	
Escalation to midpoint of 2025	2.0%	-		4,547			
Total Construction Costs				231,900	\$	2.34	
Port of Seattle - Maritime Overhead Premium	25.1%	-	\$	58,207			Overhead rate provided by Port Staff
Total Project Costs			\$	290,106	\$	2.93	
System Size (W-DC)				99,000	Wat		


Appendix E Terminal 91 – C-175 Documents


## C-175 Commercial Update Final POS Solar - Pier 91, Smith Cove park

<b>⊮</b> Report						
Project Name	POS Solar - Pier 91					
Project Address	Smith Cove park					
Prepared By	Sazan Group ses-marketing@sazan.com					
$\sum \overset{\ddot{A}}{\underset{G}{}{}{}{}{}{}{$	ZÄN Roup					

Jul System Metr	rics
Design	C-175 Commercial Update Final
Module DC Nameplate	255.3 kW
Inverter AC Nameplate	200.0 kW Load Ratio: 1.28
Annual Production	281.1 MWh
Performance Ratio	84.3%
kWh/kWp	1,101.2
Weather Dataset	TMY, SEATTLE BOEING FIELD [ISIS], NSRDB (tmy3, II)
Simulator Version	a941c5f9fb-ade56fb481- 909d0b3577-e4292083fd



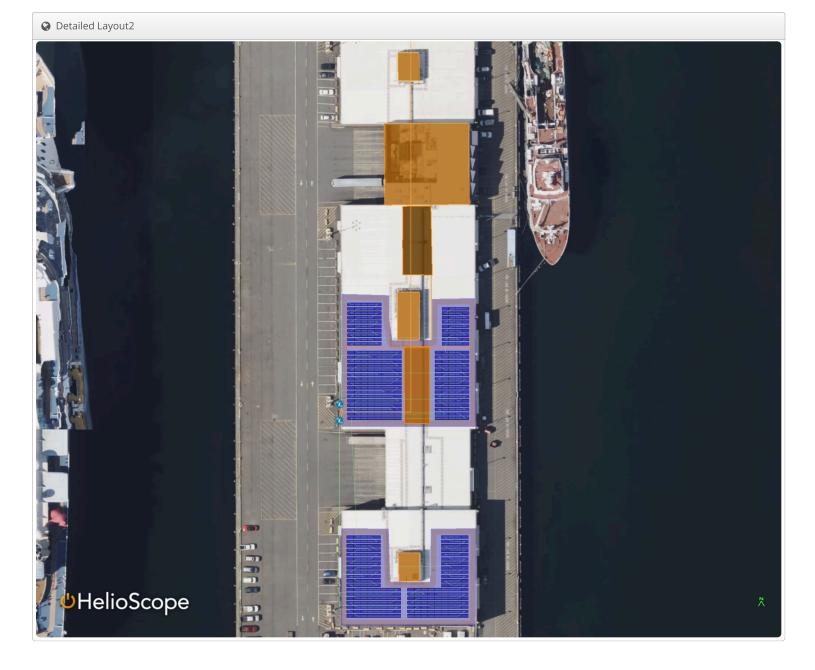




181

# **U**HelioScope

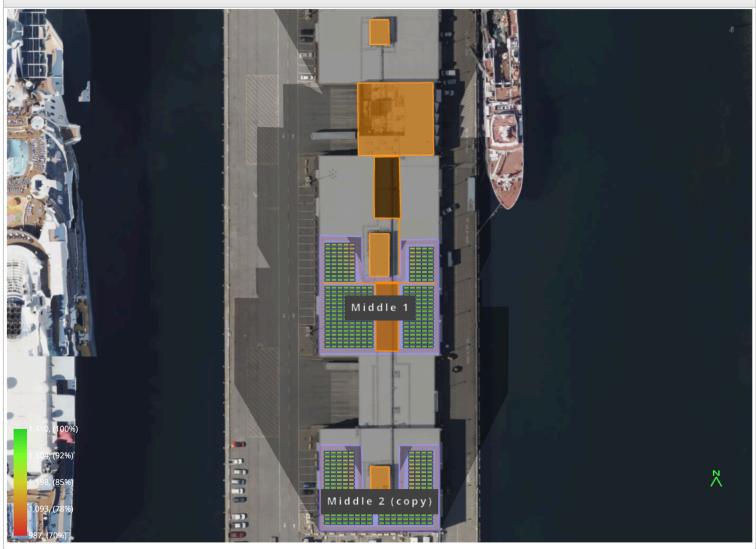
	Description	Output	% Delta				
	Annual Global Horizontal Irradiance	1,212.3					
	POA Irradiance	1,305.7	7.7%				
Irradiance	Shaded Irradiance	1,276.3	-2.3%				
(kWh/m²)	Irradiance after Reflection	1,232.1	-3.5%				
	Irradiance after Soiling	1,207.5	-2.0%				
	Total Collector Irradiance	1,207.4	0.0%				
	Nameplate	308,151.9					
	Output at Irradiance Levels	305,193.2	-1.0%				
	Output at Cell Temperature Derate	299,588.5	-1.8%				
_	Output After Mismatch	298,609.6	-0.3%				
Energy (kWh)	Optimizer Output	294,358.5	-1.4%				
()	Optimal DC Output	292,951.0	-0.5%				
	Constrained DC Output	290,691.1	-0.8%				
	Inverter Output	286,302.4	-1.5%				
	Energy to Grid	281,128.3	-1.8%				
Temperature l	Metrics						
	Avg. Operating Ambient Temp		14.0 °C				
	Avg. Operating Cell Temp		21.1 °C				
Simulation Me	trics						
	O	perating Hours	4265				
Solved Hours 426							


Condition Set														
Description	Con	Condition Set 2 Ground												
Weather Dataset	TMY	TMY, SEATTLE BOEING FIELD [ISIS], NSRDB (tmy3, II)												
Solar Angle Location	Met	Veteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sand	dia M	odel											
	Rac	к Туре	5		а		b			Te	mper	ature	Delta	
Tanan anatana Mardal	Fixe	d Tilt			-3.	56	-0.0	75		3°	С			
Temperature Model Parameters	Flus	h Mo	unt		-2.	81	-0.0	455		0°	С			
	East	t-Wes	t		-3.	56	-0.0	75		3°	С			
	Car	Carport -3.56				-0.075 3		3°	3°C					
Soiling (%)	J	F	Μ		A	Μ	J	J		A	S	0	Ν	D
	2	2	2		2	2	2	2		2	2	2	2	2
Irradiation Variance	5%													
Cell Temperature Spread	4° C													
Module Binning Range	-2.59	% to 2	2.5%											
AC System Derate	0.50	%												
Module	Мос	lule				Uple By	oaded		Ch	nara	cteriz	zation		
Characterizations		SIL-490 HN (2022) (Silfab Solar)				HelioScope			De Spec Shee Character			eet erization, PAN		
	Dev	ice					Uplo	bade	d By	у	Cha	aracte	rizatio	on
Component Characterizations	SE1	00KU	S (Sola	arE	dge	2)	Heli	oSco	pe		Spe	ec She	et	
	P11	00 (S	olarEd	ge	)		Heli	oSco	pe	Mfg Spec Sheet				

🖨 Compor	hents	
Component	Name	Count
Inverters	SE100KUS (SolarEdge)	2 (200.0 kW)
AC Panels	2 input AC Panel	1
AC Home Runs	1/0 AWG (Copper)	2 (91.9 ft)
AC Home Runs	350 MCM (Copper)	1 (2,314.1 ft)
Strings	10 AWG (Copper)	17 (5,610.3 ft)
Optimizers	P1100 (SolarEdge)	266 (292.6 kW)
Module	Silfab Solar, SIL-490 HN (2022) (490W)	521 (255.3 kW)

H Wiring Zones			
Description	Combiner Poles	String Size	Stringing Strategy
Wiring Zone	-	13-31	Along Racking

Field Se	egments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Middle 1	Fixed Tilt	Landscape (Horizontal)	Module: 10°	Module: 180°	1.5 ft	1x1	294	294	144.1 kW
Middle 2 (copy)	Fixed Tilt	Landscape (Horizontal)	Module: 10°	Module: 180°	1.5 ft	1x1	227	227	111.2 kW


### Annual Production Report produced by Sazan Group



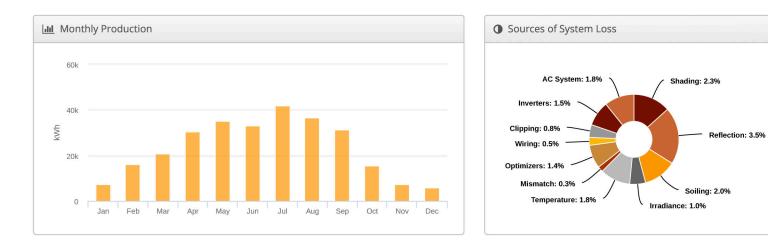
183

# C-175 Commercial Update Final POS Solar - Pier 91, Smith Cove park

Shading Heatmap



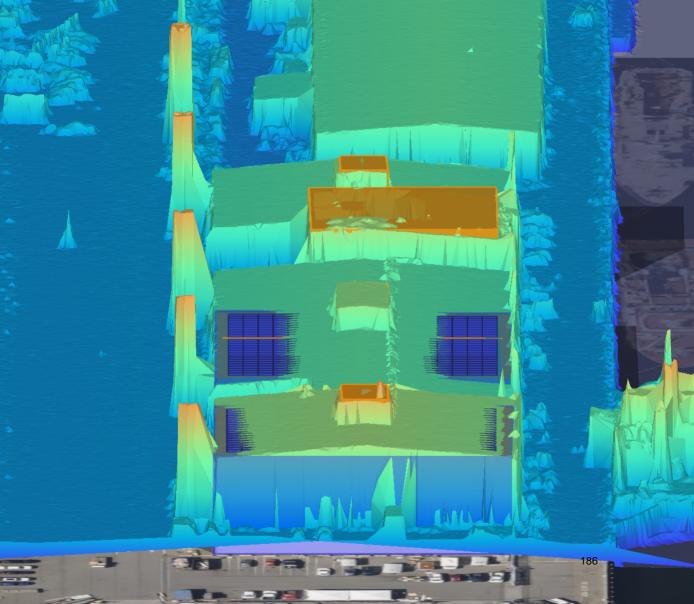
### III Shading by Field Segment

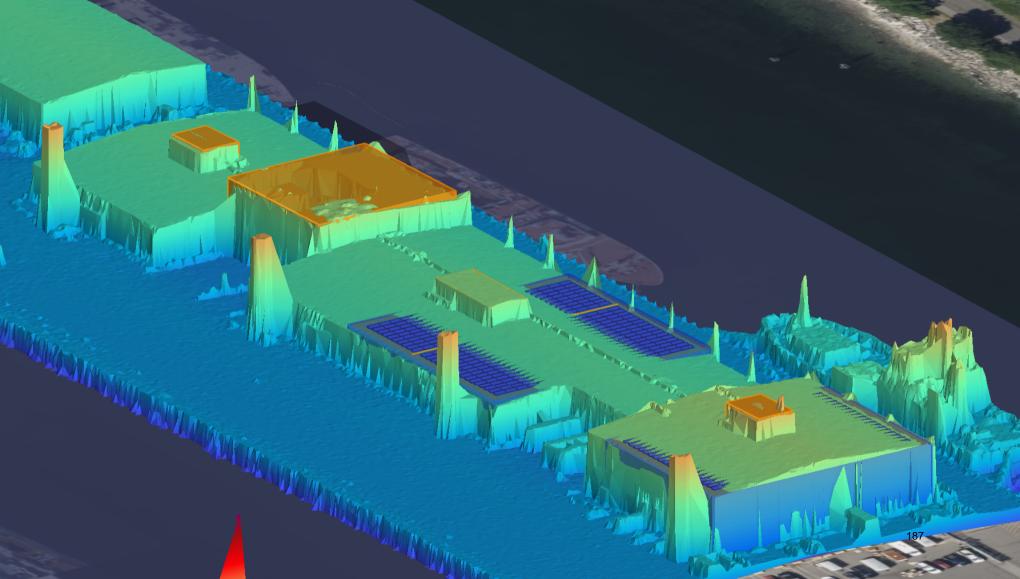

Description	Tilt	Azimuth	Modules	Nameplate	Shaded Irradiance	AC Energy	TOF ²	Solar Access	Avg TSRF ²
Middle 1	Module: 10.0°	Module: 180.0°	294	144.1 kWp	1,282.3kWh/m ²	159.3 MWh ¹	92.6%	98.2%	90.9%
Middle 2 (copy)	Module: 10.0°	Module: 180.0°	227	111.2 kWp	1,268.5kWh/m ²	121.9 MWh ¹	92.6%	97.2%	90.0%
Totals, weighted b	oy kWp		521	255.3 kWp	1,276.3kWh/m ²	281.1 MWh	92.6%	97.7%	90.5%
							¹ approx	kimate, varies based on	inverter performance

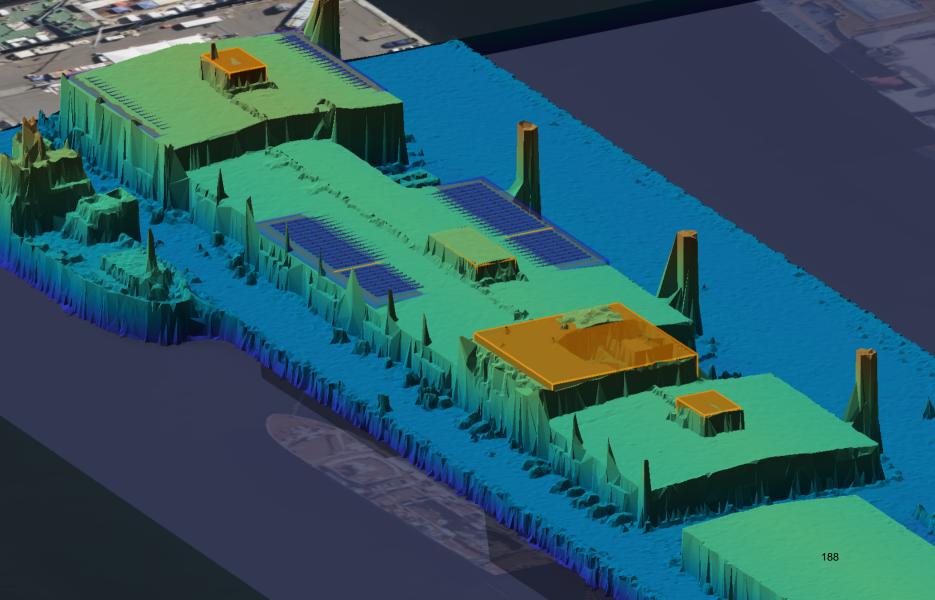
² based on location Optimal POA Irradiance of 1,409.9kWh/m² at 35.6° tilt and 186.5° azimuth

Solar Access by Month												
Description	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
Middle 1	95%	98%	98%	98%	99%	99%	99%	99%	99%	98%	96%	91%
Middle 2 (copy)	94%	96%	97%	98%	98%	98%	98%	98%	97%	97%	95%	90%
Solar Access, weighted by kWp	94.4%	97.2%	98.0%	98.1%	98.2%	98.2%	98.3%	98.3%	97.9%	97.7%	95.3%	90.4%
AC Power (kWh)	7,295.7	16,115.9	20,823.2	30,356.0	35,153.8	33,164.6	41,813.8	36,498.1	31,426.2	15,490.7	7,177.7	5,812.5

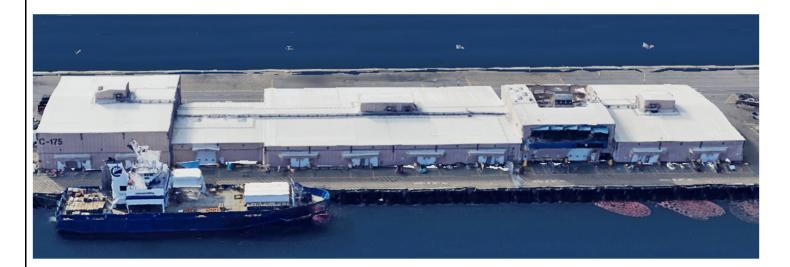
# **U**HelioScope


Shading Report produced by Sazan Group







185







# **5] TKDA**



Port of Seattle Solar Feasibility Assessment: Terminal 91 Building C-175

2001 W Garfield St, Seattle, WA 98119

**TKDA Project No. 24026** 

December 20th, 2024

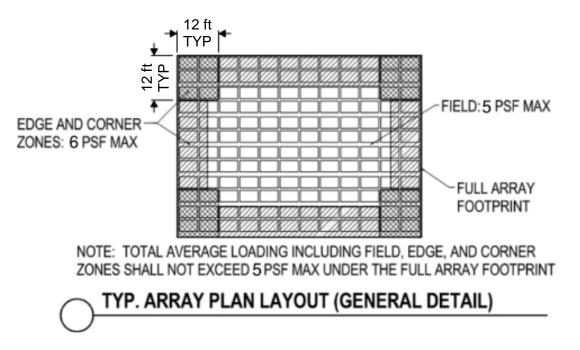




# **Structural Calculation Index**

Calculation Section	Page No.
Structural Assessment Letter	1
Gravity Loading	
Vertical Gravity Weight Verification	3
Seismic Weight Verification	4
Design Load Verification	5
Snow Calculation for Drift Check	
Restrictive Regions by Snow Drift and Areas of Roofs and Arrays	9
Snow Calculations by Building and Direction	10
RISA3D Output	
Properties and Cases of Framing	
Loading Parameters	

Standard Load Table for LH Joists	17
Load Table for Deck Capacity	19




Jack Newman Säzän Consulting Services 600 Stewart Street, Suite 1400 Seattle, WA 98101

# Re: Port of Seattle - Solar Feasibility Assessment T91, Bldg. C-175

TKDA has performed a structural assessment of the existing structure of Building C-175 from Terminal 91 in Seattle, WA to determine its ability to support a proposed ballasted rooftop PV array, including modules, racking, and associated equipment. This assessment is based on drawings provided by the Port of Seattle. The original 1992 drawings are titled "New Chill Building C-175" with DLR Group as Architect of Record (AOR) and Structural Engineer of Record (SEOR). Building C-175 is composed of HSS steel columns and W-shape steel girders with steel roof joists. The roof is a built-up roof composed of TPO membrane, insulation, and steel roof deck. In 2003, insulation was added to the underside of the roof deck. Notes on the additional insulation can be found in the 2003 as-built drawings with LMN as the AOR and Gary J Smoot as the SEOR.

# The results of our analysis show that the existing framing is sufficient to carry proposed loading for the planned PV array as detailed in layout plan below.



Section 503.3 of the 2021 Washington State IEBC states that any building alterations which cause an increase in design dead, live, or snow load of less than 5 percent do not require strengthening or modification of the affected members. The result of the analysis shows that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening. See calculations enclosed.

Per section 503.4 of the 2021 Washington State IEBC, building alterations resulting in a lateral load increase of less than 10 percent do not require strengthening or modification of the affected members. The total array weight is less than the maximum allowable array weight based on 10 percent of the original seismic weight tributary to the roof diagram thus no strengthening nor modifications are needed to the roof framing members. See enclosed calculations.

In summary, the existing building structure is adequate to support the proposed ballasted rooftop PV array given its average weight of 5 psf underneath the footprint of the array. Please contact TKDA with any further questions.

Sincerely, **TKDA Engineers** 

Daniel Munn, PE, SE Vice President, Northwest Region

Project Name: Project Location: Building: Date: Port of Seattle Solar Feasibility Studies Seattle, WA Terminal 91 Building C-175 December 20th, 2024



Page 3

**Governing Building Codes:** 

2021 Washington State IEBC ASCE 7-16

### Vertical Gravity Weight Verification

### **Original Design Loads Per Design Drawings:**

Load Case	<u>Magnitude</u>	<u>Comments</u> Per general notes + additional insulation from 2003
Dead Load	17.1 psf	renovation
Snow Load	25 psf	WABO, UBC 97
Roof Live Load	20 psf	
Live Load (In roof penthouse)	50 psf	

#### IEBC § 503.3:

"Any existing gravity load-carrying structural element for which an alteration causes an increase in design, dead, live, or snow load, including snow drift effects, of more than 5 percent shall be replaced or altered as needed to carry the gravity loads required by the International Building Code for new structures. Any existing gravity load-carrying structural element whose gravity-load carrying capacity is decreased as part of the alteration shall be shown to have the capacity to resist the applicable design dead, live and snow loads including snow drift effects required by the International Building Code for new structures"

Actual Loads		
Load Case	Magnitude	<u>Comments</u>
		Per general notes + additional insulation from 2003
Dead Load	17.1 kips	renovation
Snow Load	25 psf	WABO UBC 97
Actual Array Weight =	5 psf	

### Actual Snow Load + Actual Array Weight < Original Design Snow Load

### **Conclusions:**

See RISA analysis. Per IEBC 503.3, the structural elements are sufficient to carry the increased 5 psf array weight due to the proposed ballasted rooftop PV array without additional strengthening. In addition, TKDA has also checked snow loading for ASCE7 values to confirm arrays are not within the snow drift limits.

Project Name: Project Location: Building: Date: Port of Seattle Solar Feasibility Studies Seattle, WA Terminal 91 Building C-175 December 20th, 2024



Page 4

**Governing Building Codes:** 

2021 Washington State IEBC ASCE 7-16

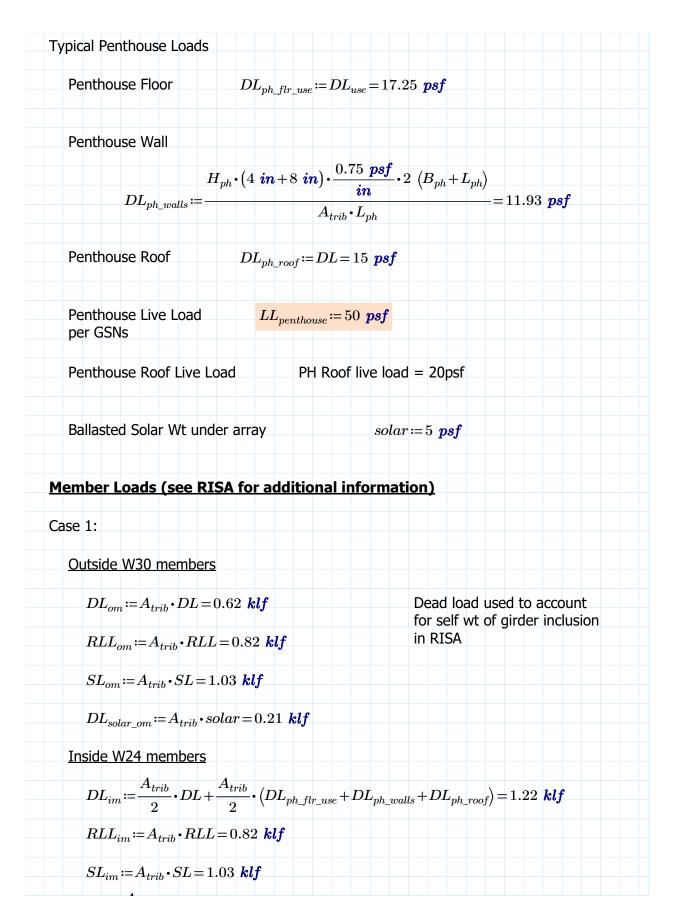
### Seismic Weight Verification

### **Original Seismic Weight Calculation:**

Item Description	Value	Comments
Roof Area =	88851 sf	Total roof area, determined from drawings
Roof DL =	17 psf	See calculations
1/2 Wall Area =	51370 sf	1/2 Height of wall area, Determined from design drawings
Wall DL =	12 psf	See calculations
Weight Trib to Roof =	2149 kips	

#### IEBC § 503.4:

"Any existing lateral load-carrying structural element whose demand-capacity ratio with the alteration considered is not more than 10 percent greater than its demand-capacity ratio with the alteration ignored shall be permitted to remain unaltered."

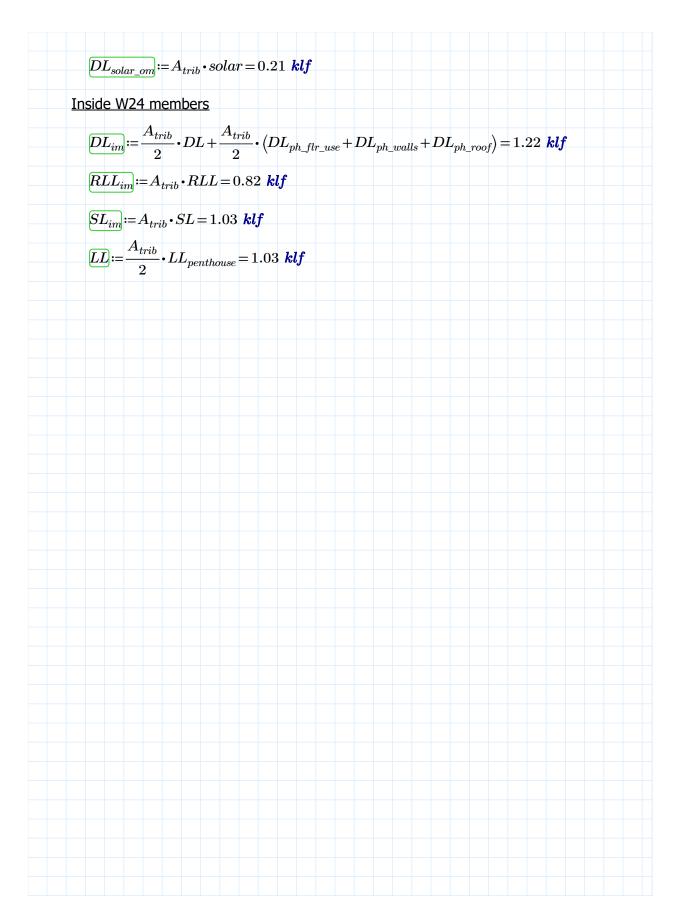

#### Allowable Weight Increase Calculation:

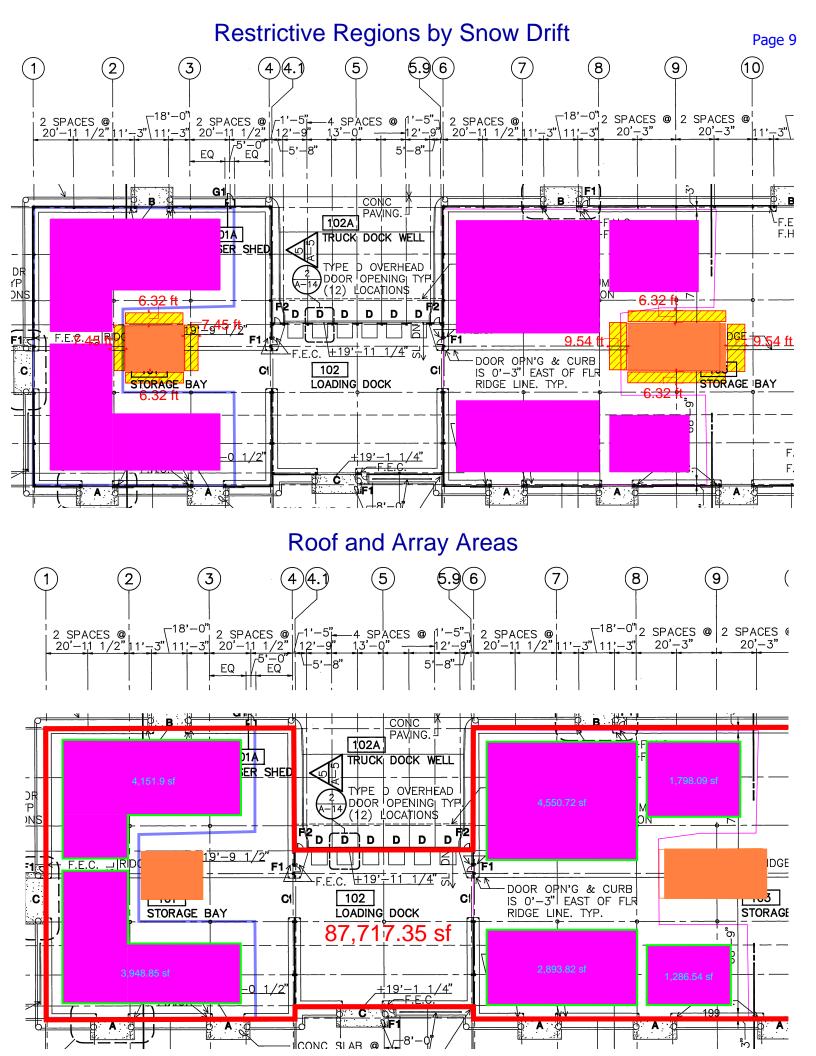
Item Description	<u>Value</u>	<u>Comments</u>
10% Increase Per IEBC § 503.4 =	215.0 kips	Maximum array weight
Typ. Weight of Array =	5 psf	Under footprint
Actual Array Weight	26.2 kips	
Actual Array Area	5231 sf	Determined from layouts
Max Allowable Array Area =	43000 sf	

#### **Conclusions:**

The new solar array weight of 26.2 kips is less than the maximum allowable array weight of 215 kips based on a 10% increase per IEBC § 503.4. The results of the analysis shows that the existing framing is sufficient to carry the increased loading due to the proposed rooftop PV array without additional strengthening.

Trib Area of Roof Girders	$A_{trib} \coloneqq \frac{41 \ \mathbf{ft} + 11 \ \mathbf{in} + 40}{2}$	$\frac{5.5 \ ft}{1.21} = 41.21 \ ft$
Penthouse Wall Height	$H_{ph} \coloneqq 12 \ ft$	
	$m_{ph} = 12 J t$	
Penthouse Area Dimenions	$B_{ph} \coloneqq 30 \ ft$ $L_{ph} \coloneqq$	$= 23.5 ft \qquad A_{ph} := B_{ph} \cdot L_{ph} = 705 ft$
Typical Roof Loads (not includ	ling Penthouse	
Roof Dead $DL := 1$ Load per GSNs	15 <i>psf</i> (See below, 200	03 revamp added 3" of insulation to root
Roof Live Load RLL = per GSNs	= 20 <b>psf</b>	
Roof Snow $SL := 2$ Load per GSNs	25 psf	
Confirmation of Roof Dead Loc $DL_{deck} := 2.3 \ psf$	ads HSB-36 roof (depth = 1.1	
$DL_{insul_1} \coloneqq \begin{pmatrix} 6 & in - 1.5 & in \\ 0.75 & psf \end{pmatrix}$		Per A/6 of 1992 drawings- "6" Nominal Roof Deck & Insulatio
$DL_{insul_2} \coloneqq rac{0.75 \ psf}{in} \cdot 3$	$n = 2.25 \ psf$	Per TA-5 of 2003 drawings-
$DL_{membrane} \coloneqq 1 \ psf$		3" Board Insulation attached to underside of existing deck
$DL_{joist} := \frac{16 \ plf}{8.2 \ ft} = 1.95$	psf	
$DL_{stl} \coloneqq \frac{108 \ plf \cdot 0.83 + 0.83 + 0.83}{A_{tril}}$	$\frac{62 \ plf \cdot 0.17}{p} = 2.43 \ psf$	
$DL_{roof} \coloneqq DL_{deck} + DL_{inst}$	$_{ul_{-1}} + DL_{insul_{-2}} + DL_{membrane}$	$+DL_{joist}+DL_{stl}=13.31 \ psf$
Use this value		





$$LL := \frac{A_{trib}}{2} \cdot LL_{penthouse} = 1.03 \text{ klf}$$

$$DL_{solar,im} := \frac{A_{trib}}{2} \cdot solar = 0.1 \text{ klf}$$
Case 2:
$$A_{trib2} := 40.5 \text{ ft}$$
Outside W30 members
$$DL_{out} := A_{trib2} \cdot DL = 0.61 \text{ klf}$$
Dead load used to account for self wt of girder inclusion in RISA
$$SL_{om} := A_{trib2} \cdot SL = 1.01 \text{ klf}$$
Inside W24 members
$$DL_{im} := A_{trib2} \cdot SL = 1.01 \text{ klf}$$

$$RLL_{im} := A_{trib2} \cdot SL = 1.01 \text{ klf}$$

$$RLL_{im} := A_{trib2} \cdot SL = 1.01 \text{ klf}$$
Case 3:
$$DL_{out} := A_{trib2} \cdot LL_{penthouse} = 2.03 \text{ klf}$$
Case 3:
$$DL_{out} := A_{trib2} \cdot LL_{penthouse} = 2.03 \text{ klf}$$
Dead load used to account for self wt of girder inclusion in RISA





### SNOW CALCULATIONS per ASCE 7-16

### GRID 1-4 NS

GRID 1-4 NS		L. Surcharge Load
Roof Geometry		Due to Drifting
Upper Roof Length, I _u (ft):	12.06	ne h _d p _d
Lower Roof Length, I _I (ft):	62	
Roof Height Difference, h (ft):	12.2	
Separation Distance, s (ft):	0	Figure 7.7-2. Configuration of snowdrifts on lower roofs.
Clear Roof Height, h _c (ft):	11.00	
Slope Rise	1	/12
Actual Slope, degrees	4.764	
Balanced Snow		
Ground Snow Load, p _g (psf):	20	
Exposure Factor, C _e (Table 7-2):	0.9	
Thermal Factor, C _t (Table 7-3):	1.3	
Importance Factor, I (Table 7-4):	1.0	
Slope Factor, C _s (=1.0 if Flat):	1.0	
Minimum Flat Snow Load, pf (psf):	20	$= p_g * l \text{ or } 20* l$
Sloped Roof Snow Load, p _s (psf):	20	= 0.7*C _e *C _t *I*C _s *p _g or p _{fmin}
Snow Density, γ (pcf):	16.6	$= 0.13 * p_g + 14 \le 30$
Balanced Snow Height, h _b (ft):	1.20	$= p_f / \gamma$
Adjacent Structure Factor, asf	1.00	= (20-s) / 20
Leeward Drift		Drift Size

### Leeward Drift

$h_d = \left(0.43 \cdot \sqrt[3]{l_u} \cdot \sqrt[4]{p_g + 1}\right)$	$\overline{0} - 1.5 \cdot \sqrt{I_s} \cdot asf$
Drift Height, h _d (ft):	0.81

### Windward Drift

$h_d = 0.75 \cdot$	$\left(0.43 \cdot \sqrt[3]{l_l} \cdot \sqrt[4]{p_g + 10} - 1\right)$	$5\right) \cdot \sqrt{I_s} \cdot asf$
Drift Height, h _d	(ft):	1.86

DITILOIZO		
Design Height, h _d (ft):	1.86	
But not greater than $h_c$ (ft):	1.86	
Drift Width, w (ft):		
If $h_d \le h_{c_i} 4 * h_d$	7.45	
If $h_d > h_c$ , 4 * $h_d^2 / h_c$	1.26	
But not greater than 8*h _c :	87.96	
w (ft):	7.45	
Maximum Surcharge Load, p _d (psf):	30.91	$= h_d / \gamma$

Sloped Roof Results			
Sloped Roof Snow Load, p _s (psf):	20.0	psf	
Balanced Snow Height, h _b (ft):	1.2	ft	

<u>Drift Results - Does</u>	<u>s not apply</u>	
Drift Height, h _d	1.86	ft
Drift Width, w	7.45	ft
Maximum Surcharge Load, p _d	30.91	psf

Page 1 of 1

	PROJECT	SAZAN	BY: WW	SHEET:
		TERMINAL C-175	CHKD:	PROJECT NO:
IKDA	TITLE	GRID 1-4 NS	DM	24026
		SNOW CALCULATION	DATE: 12/16/24	PAGE:

Page 10

### SNOW CALCULATIONS per ASCE 7-16

### GRID 1-4 FW

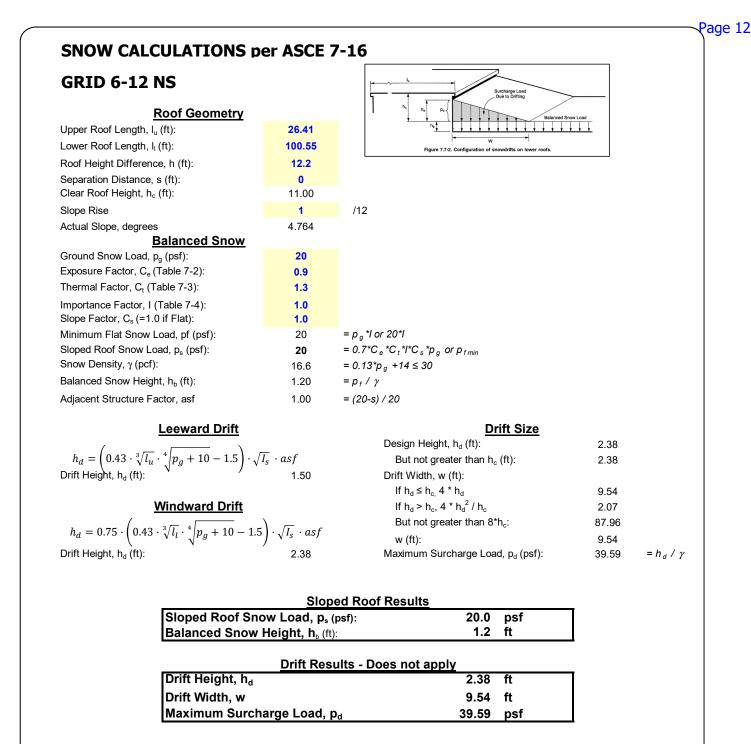
GRID 1-4 EW		La Surcharge Load
Roof Geometry		Due to Drifting
Upper Roof Length, I _u (ft):	17	h _c h _d p _d
Lower Roof Length, I _I (ft):	46	
Roof Height Difference, h (ft):	12.2	
Separation Distance, s (ft):	0	Figure 7.7-2. Configuration of snowdrifts on lower roofs.
Clear Roof Height, h _c (ft):	11.00	
Slope Rise	1	/12
Actual Slope, degrees	4.764	
Balanced Snow		
Ground Snow Load, p _g (psf):	20	
Exposure Factor, C _e (Table 7-2):	0.9	
Thermal Factor, C _t (Table 7-3):	1.3	
Importance Factor, I (Table 7-4):	1.0	
Slope Factor, C _s (=1.0 if Flat):	1.0	
Minimum Flat Snow Load, pf (psf):	20	$= p_g * l \text{ or } 20* l$
Sloped Roof Snow Load, p _s (psf):	20	= $0.7^*C_e^*C_t^*I^*C_s^*p_g$ or $p_{fmin}$
Snow Density, γ (pcf):	16.6	$= 0.13^* p_g + 14 \le 30$
Balanced Snow Height, h _b (ft):	1.20	$= p_f / \gamma$
Adjacent Structure Factor, asf	1.00	= (20-s) / 20
Leeward Drift		Drift Size

### Leeward Drift

$h_d =$	$\left(0.43 \cdot \sqrt[3]{l_u} \cdot \sqrt[4]{p_u}\right)$	$\overline{I_g + 10} - 1.5 \cdot \sqrt{I_s}$	$\cdot$ asf
Drift Heig	nt, h _d (ft):	/	1.09

### Windward Drift

		<u>۱</u>
$h_d = 0.75 \cdot$	$\left(0.43 \cdot \sqrt[3]{l_l} \cdot \sqrt[4]{p_g + 10} - 1.5\right)$	$\left( \right) \cdot \sqrt{I_s} \cdot asf$
Drift Height, h _d	(ft):	1.58


DTIT OILO		
Design Height, h _d (ft):	1.58	
But not greater than $h_c$ (ft):	1.58	
Drift Width, w (ft):		
If $h_d \le h_{c,} 4 * h_d$	6.32	
If $h_d > h_c$ , 4 * $h_d^2 / h_c$	0.91	
But not greater than 8*h _c :	87.96	
w (ft):	6.32	
Maximum Surcharge Load, p _d (psf):	26.22	$= h_d / \gamma$

Sloped Roof Results			
Sloped Roof Snow Load, p _s (psf):	20.0	psf	
Balanced Snow Height, h _b (ft):	1.2	ft	

Drift Results - Does not apply					
Drift Height, h _d	1.58	ft			
Drift Width, w	6.32	ft			
Maximum Surcharge Load, p _d	26.22	psf			

Page 1 of 1

	PROJECT	SAZAN	BY: WW	SHEET:
TVDA		TERMINAL C-175	CHKD:	PROJECT NO:
	TITLE	GRID 1-4 EW	DM	24026
			DATE:	PAGE:
J		SNOW CALCULATION	12/16/24	



Page 1 of 1

	PROJECT	SAZAN	BY: WW	SHEET:
		TERMINAL C-175	CHKD:	PROJECT NO:
	TITLE	GRID 6-12 NS	DM	24026
		SNOW CALCULATION	DATE: 12/16/24	PAGE:

**SNOW CALCULATIONS per ASCE 7-16 GRID 6-12 EW** Surcharge Load Due to Drifting **Roof Geometry** Upper Roof Length, I_u (ft): 17 Balanced Snow Load Lower Roof Length, I_I (ft): 46 Т Roof Height Difference, h (ft): 12.2 w Separation Distance, s (ft): 0 Figure 7.7-2. Configuration of snowdrifts on lower roofs Clear Roof Height, h_c (ft): 11.00 Slope Rise 1 /12 Actual Slope, degrees 4.764 **Balanced Snow** Ground Snow Load, p_q (psf): 20 Exposure Factor, Ce (Table 7-2): 0.9 or p_{f min} **Drift Size** nt, h_d (ft): 1.58 eater than h_c (ft): 1.58 (ft): * h_d 6.32 4 * h_d ² / h_c 0.91  $h_d = 0.75 \cdot \left( 0.43 \cdot \sqrt[3]{l_l} \cdot \sqrt[4]{p_g + 10} - 1.5 \right) \cdot \sqrt{l_s} \cdot asf$ But not greater than 8*h_c: 87.96 6.32 w (ft):

Drift Height, h_d (ft):

Sloped Roof Results		
Sloped Roof Snow Load, p _s (psf):	20.0	psf
Balanced Snow Height, h _b (ft):	1.2	ft

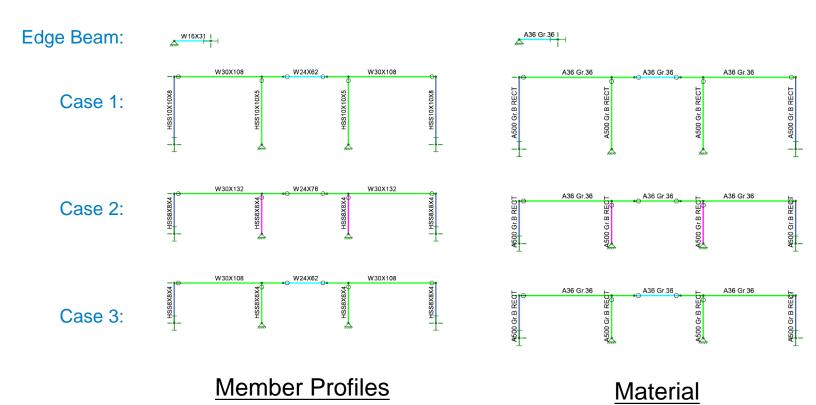
Maximum Surcharge Load, p_d (psf):

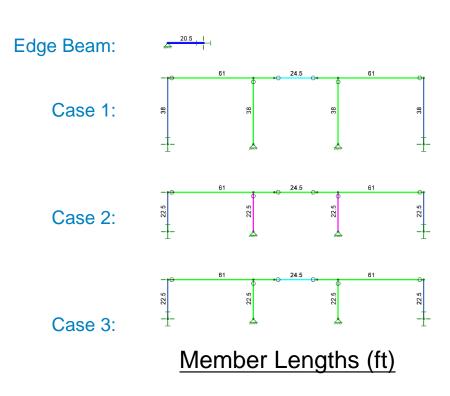
1.58

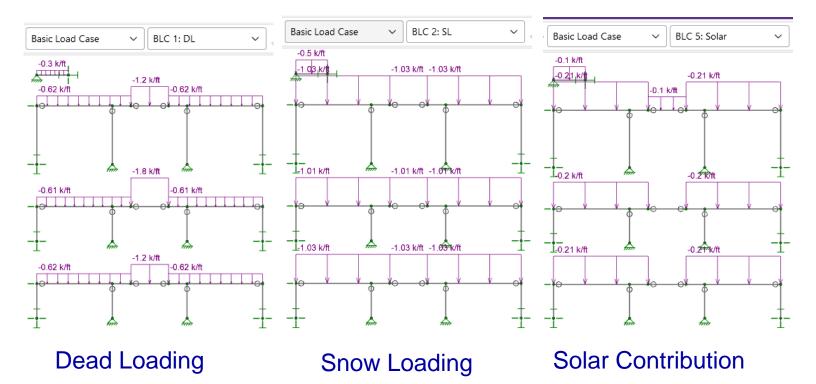
Drift Results - Does not apply				
Drift Height, h _d	1.58	ft		
Drift Width, w	6.32	ft		
Maximum Surcharge Load, p _d	26.22	psf		

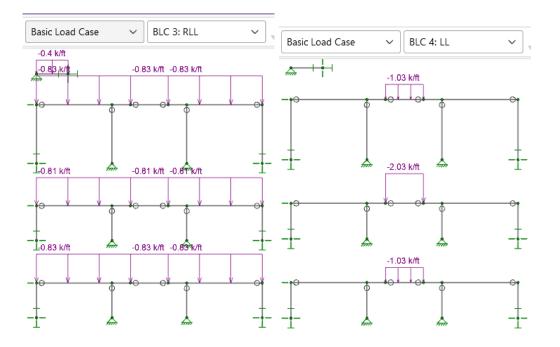
Page 1 of 1

26.22


 $= h_d / \gamma$ 


	PROJECT	SAZAN	BY:	SHEET:
<b>TKDA</b>		TERMINAL C-175	CHKD:	PROJECT NO:
	TITLE	GRID 6-12 EW	DM	24026
		SNOW CALCULATION	DATE: 12/16/24	PAGE:


Snow Density, $\gamma$ (pcf): Balanced Snow Height, h _b (ft):	16.6 1.20	$= 0.13^* p_g + 14 \le 30$ = $p_f / \gamma$
Adjacent Structure Factor, asf	1.00	$= p_f / \gamma$ = (20-s) / 20
Leeward Drift		
		Design Height,
$h_d = \left(0.43 \cdot \sqrt[3]{l_u} \cdot \sqrt[4]{p_g + 10} - 1.5\right) \cdot \sqrt{2}$ Drift Height, h _d (ft):	$I_s \cdot asf$	But not grea
Drift Height, h _d (ft):	1.09	Drift Width, w
		lf h _d ≤ h _c , 4 [±]
Windward Drift		If $h_d > h_c$ , 4


	TITLE
--	-------

3D RISA-3D Page 14









**Roof Live Loading** 

Live Loading



	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed
1	DL	DL		-1				10
2	SL	SL						10
3	RLL	RLL						10
4	LL	LL						3
5	Solar	DL						8

# Load Combinations

	Description	Solve	P-Delta	SRSS	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	DL	$\sim$	Υ		DL	1						
2	LL	$\sim$	Y		LL	1						
3	DL+LL	$\sim$	Υ		DL	1	LL	1				
4	IBC 21/ASCE Strength 1	$\sim$	Υ		DL	1.4						
5	IBC 21/ASCE Strength 2 (a)	$\sim$	Υ		DL	1.2	LL	1.6			RLL	0.5
6	IBC 21/ASCE Strength 2 (b)		Υ		DL	1.2	LL	1.6			SL	0.5
7	IBC 21/ASCE Strength 2 (c)	$\sim$	Υ		DL	1.2	LL	1.6				
8	IBC 21/ASCE Strength 3 (a)		Υ		DL	1.2	RLL	1.6	LL	0.5		
9	IBC 21/ASCE Strength 3 (c)	$\sim$	Y		DL	1.2	SL	1.6			LL	0.5

# Code Check

Hot Rol	led Steel	Cold Form	ed Steel \	Nood	Concrete I	Beams Co	ncrete Co	lumns	Aluminum	Stainles	s				
	Member	Shape	Code Check	Loc[ft]	LC	Shear Check	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
1	M1	W30X108	0.805	12.073	9	0.237	12.073	у	9	391.162	1027.08	118.53	934.2	1	H1-1b
2	M2	W30X108	0.805	48.927	9	0.237	48.927	у	9	391.162	1027.08	118.53	934.2	1	H1-1b
3	M3	W24X62	0.752	12.25	9	0.211	24.5	у	6	294.409	589.68	42.341	378.993	1	H1-1b
4	M4	W30X132	0.844	12.073	6	0.229	11.438	у	6	632.616	1257.12	157.68	1179.9	1	H1-1b
5	M5	W30X132	0.844	48.927	6	0.229	49.563	у	6	632.616	1257.12	157.68	1179.9	1	H1-1b
6	M6	W24X76	0.838	12.25	6	0.324	24.5	у	6	443.103	725.76	77.22	537.678	1	H1-1b
7	M7	HSS10X10	0.199	0	9	0	38	У	9	278.22	712.08	209.415	209.415	1	H1-1b*
8	M8	HSS10X10	0.199	0	9	0	38	у	9	278.22	712.08	209.415	209.415	1	H1-1b*
9	M9	HSS8X8X4	0.274	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
10	M10	HSS8X8X4	0.274	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
11	M11	HSS10X10	0.886	0	9	0	38	у	9	186.336	459.54	129.31	129.31	1	H1-1a*
12	M12	HSS10X10	0.886	0	9	0	38	у	9	186.336	459.54	129.31	129.31	1	H1-1a*
13	M13	HSS8X8X4	0.999	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
14	M14	HSS8X8X4	0.999	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
15	M15	W30X108	0.786	12.073	9	0.236	12.073	у	9	391.162	1027.08	118.53	934.2	1	H1-1b
16	M16	W30X108	0.786	48.927	9	0.236	48.927	у	9	391.162	1027.08	118.53	934.2	1	H1-1b
17	M17	W24X62	0.728	12.25	9	0.205	24.5	у	6	294.409	589.68	42.341	378.993	1	H1-1b
18	M18	HSS8X8X4	0.298	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
19	M19	HSS8X8X4	0.298	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
20	M20	HSS8X8X4	0.902	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	H1-1a*
21	M21	HSS8X8X4	0.902	0	9	0	22.5	у	9	179.632	293.94	66.288	66.288	1	206 ^{1 a*}
22	M22	W16X31	0.547	10.25	9	0.143	20.5	у	9	150.49	295.812	18.981	126.41	1	H1-1b

# STANDARD LOAD TABLE Base 30,000 LONGSPAN STEEL JOISTS, LH- SERIES

Based on a Maximum Allowable Tensile Stress of 30,000 psi

### Historical LH joist table

Adopted by the Steel Joist Institute May 25, 1983 Revised to November 15, 1989

The black figures in the following table give the TOTAL safe uniformly-distributed load-carrying capacities, in pounds per linear foot, of LH-Series joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables.

The red figures in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the red figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

This load table applies to joists with either parallel

chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at center of the span. Standard top chord pitch is 1/8 inch per foot. If pitch exceeds this standard, the load table **does not** apply. This load table may be used for parallel chord joists installed to a maximum slope of 1/2 inch per foot.

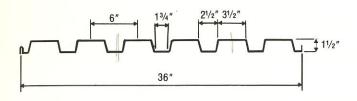
When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to reduction of chord areas.

The top chords are considered as being stayed laterally by floor slab or roof deck.

The approximate joist weights per linear foot shown in these tables do **not** include accessories.

Joist Designation	Approx. Wt. in Lbs. per Linear Ft.	Depth in Inches	SAFE LOAD* in Lbs. Between						1.0			N IN I				1	1		
	(Joists Only)		21-24	25	26	27	28	29	30	31	32	33	34	35	36				
18LH02	10	18	12000	468	442	418	391	367	345	324	306	289	273	259	245			8	
18LH03	11	18	13300	313 521	284 493	259 467	234 438	212 409	193 382	175 359	160 337	147 317	135 299	124 283	114 267				
18LH04	12	18	15500	348 604	317 571	289 535	262 500	236 469	213 440	194 413	177 388	161 365	148 344	136 325	124 308				
18LH05	15	18	17500	<b>403</b> 684	367 648	329 614	296 581	266 543	242 508	219 476	200 448	182 421	167 397	153 375	1 <b>4</b> 1 355				
18LH06	15	18	20700	<b>454</b> 809	<b>414</b> 749	<b>378</b> 696	<b>345</b> 648	311 605	282 566	256 531	233 499	212 470	195 443	1 <b>79</b> 418	1 <mark>64</mark> 396				
18LH07	17	18	21500	526 840	<b>469</b> 809	<mark>419</mark> 780	377 726	340 678	<b>307</b> 635	280 595	254 559	232 526	212 496	195 469	180 444				
18LH08	19	18	22400	553 876	513 843	<b>476</b> 812	<b>428</b> 784	<mark>386</mark> 758	<b>349</b> 717	<b>317</b> 680	288 641	<b>264</b> 604	241 571	<b>222</b> 540	<mark>204</mark> 512				
18LH09	21	18	24000	577 936	<b>534</b> 901	<b>496</b> 868	<b>462</b> 838	<b>427</b> 810	<b>387</b> 783	<b>351</b> 759	320 713	<b>292</b> 671	633	<b>246</b> 598	226 566				
				616	571	527	491	458	418	380	346	316	289	266	245	37	38	39	40
			22-24	25	26	27	28	29	30	31	32	33	34	35	36				
20LH02	10	20	11300	442	437	431	410	388	365	344	325	307	291	275	262	249	237	225	215
20LH03	11	20	12000	<b>306</b> 469	<b>303</b> 463	<b>298</b> 458	<b>274</b> 452	250 434	<b>228</b> 414	208 395	1 <mark>90</mark> 372	1 <b>74</b> 352	160 333	1 <b>47</b> 316	136 299	126 283	117 269	108 255	101 243
20LH04	12	20	14700	<b>337</b> 574	<b>333</b> 566	<b>317</b> 558	<b>302</b> 528	<b>280</b> 496	258 467	<b>238</b> 440	<mark>218</mark> 416	200 393	1 <mark>84</mark> 372	1 <mark>69</mark> 353	156 335	1 <b>43</b> 318	133 303	123 289	114 275
20LH05	14	20	15800	<b>428</b> 616	<b>406</b> 609	386 602	<b>352</b> 595	320 571	<mark>291</mark> 544	265 513	<b>243</b> 484	<b>223</b> 458	<b>205</b> 434	189 411	1 <b>74</b> 390	1 <mark>61</mark> 371	1 <b>49</b> 353	<b>139</b> 336	129 321
20LH06	15	20	21100	<b>459</b> 822	<b>437</b> 791	<b>416</b> 763	395 723	366 679	<b>337</b> 635	308 596	281 560	<b>258</b> 527	<b>238</b> 497	219 469	202 444	187 421	173 399	161 379	150 361
20LH07	17	20	22500	606 878	561 845	521 814	<b>477</b> 786	427 760	386 711	351 667	<b>320</b> 627	<b>292</b> 590	<b>267</b> 556	246 526	<b>226</b> 497	<b>209</b> 471	192 447	178 425	165 404
20LH08	19	20	23200	647 908	599 873	556 842	518 813	<b>484</b> 785	<b>438</b> 760	398 722	<b>362</b> 687	<b>33</b> 1 654	<b>303</b> 621	<b>278</b> 588	256 558	236 530	218 503	<b>202</b> 479	187 457
20LH09	21	20	25400	669 990	<mark>619</mark> 953	575 918	536 886	500 856	<b>468</b> 828	<b>428</b> 802	395 778	365 755	336 712	<b>309</b> 673	<b>285</b> 636	<b>262</b> 603	2 <b>42</b> 572	<b>225</b> 544	209 517
20LH10	23	20	27400	729 1068 786	675 1028 724	626 991 673	581 956 626	542 924 585	507 894 545	475 865 510	437 839 479	<b>399</b> 814 <b>448</b>	366 791 411	336 748 377	309 707 346	285 670 320	264 636 296	244 604 274	227 575 254




### STANDARD LOAD TABLE / LONGSPAN STEEL JOISTS, LH-SERIES

Based on a Maximum Alllowable Tensile Stress of 30,000 psi

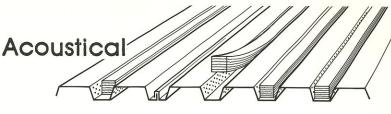
	Joist Designation	Approx. Wt. in Lbs. per Linear Ft.	Depth in Inches	SAFE LOAD* in Lbs. Between						c	LEAF	SPA	N IN F	EET						2
		(Joists Only)		28-32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
	24LH03	11	24	11500	342 235	339 226	336 218	323 204	307 188	293 175	279 1 <mark>62</mark>	267 152	255 141	244 1 <b>32</b>	234 124	224 116	215 109	207 102	199 <mark>96</mark>	191 90
	24LH04	12	24	14100	419 288	398 265	379 246	360 227	343 210	327 195	312 182	298 169	285 158	273 148	262 138	251 130	241 122	231 114	222 107	214 101
	24LH05	13	24	15100	449	446	440	419	399	380	363	347	331 182	317	304 160	291 150	280 141	269 132	258 124	248 117
	24LH06	16	24	20300	604 411	579 382	555 356	530 331	504 306	480 284	457 263	437 245	417 228	399 211	381 197	364 184	348 172	334 161	320 152	307 142
	24LH <b>07</b>	17	24	22300	665 452	638 421	613 393	588 367	565 343	541	516 297	491 276	468 257	446 2 <b>39</b>	426 223	407 208	389 195	373 182	357 171	343 161
	24LH08	18	24	23800	707 480	677 447	649 416	622 388	597 362	572	545 314	520 292	497	475 254	455 238	435 222	417 208	400 196	384 1 <b>84</b>	369 173
	24LH09	21	24	28000	832 562	808 530	785 501	764 <b>460</b>	731	696	663 363	632 337	602 313	574 292	548 272	524 254	501 238	480 223	460 209	441 196
Para	meters:								788 474	768 <b>439</b>	737 406	702 378	668 351	637 326	608 304	582 285	556 266	533 249	511 234	490 220
									329 <b>498</b>	807 472	787 449	768 <b>418</b>	734 388	701 361	671 337	642 315	616 <b>294</b>	590 276	567 259	544 243
DL =	15 psf								<del>+50</del> 45	46	47 /	48	49	50	51	52	53	54	55	56
Self \	vt = 16	olf							286 <mark>69</mark>	275	265 150	255 1 <b>42</b>	245 133	237 1 <b>26</b>	228 119	220 113	213 107	206	199 97	193 92
	25 psf								879	159 364	350	337	324	313	301	291 148	281	271 133	262	253 120
	spacing	= 8'-2"							<mark>23</mark> 427	<b>209</b> 410	1 <b>97</b> 394	1 <b>86</b> 379	175 365	1 <b>66</b> 352	156 339		140 316	1 <b>33</b> 305	126	
	= 42  ft	- 0 2							51	236	222	209	197	186	176	327 1 <mark>66</mark>	158	150	295 1 <b>42</b>	285 1 <b>35</b>
opun									456 68	438 252	420 236	403 222	387 209	371 196	357 185	344 1 <b>75</b>	331 165	319 <b>156</b>	308 1 <b>48</b>	297 140
			10maf	×)*0 407#			20		563	540	519	499	481	463	446	430	415 204	401	387 1 <b>83</b>	374 1 <b>73</b>
Avail	able Ca	pacity = (	40psi -	⊦ x)*8.167ft	+ 10	s pii	= 38	ia bi	29 625	<b>309</b> 600	291 576	274 554	258 533	243 513	<b>228</b> 495	216 477		193 444		
									64	342	322	554 303	285	269	255	477 241	460 228	444 215	429 204	415 193
x = 6	.9 psf								682 97	655 373	629 <b>35</b> 1	605 331	582 312	561 294	540 278	521 263	502 249	485 236	468 223	453 212
									782	766	737	709	682	656	632 <mark>32</mark> 1	609 303	587 285	566 270	546 <b>256</b>	527 243
Sumi	mary - J	oists coul	d acco	mmodate 6	.9 p	sf ac	ditic	onal	<mark>54</mark> 316	<b>435</b> 799	<b>408</b> 782	383 766	<b>361</b> 751	<b>340</b> 722	<b>321</b> 694	<b>303</b> 668	643	620		
loadi									72	452	433	415	396	373	352	332	314	297	598 281	577 266
	<u> </u>		00	10700	200	000	015	204	53	54	55	56	57	58	59	60	61	62	<b>63</b>	<b>64</b>
	32LH06 32LH07	14	32 32	16700 18800	338 211 370	326 199 366	315 189 353	304 179 341	294 169 320	284 161 318	275 153 308	266 145 298	257 138 288	249 131 279	242 125 271	234 119 262	227 114 254	220 108 247	214 104 240	208 99 233
	32LH07	16	32	20400	379 235 411	366 223 397	353 211	341 200 360	329 189 357	318 179	308 170	298 162	288 154 312	279 146 302	271 140 293	262 133 284	254 1 <mark>27</mark> 275	247 121 267	240 116 259	233 111 252
	32LH08	17		25600	255	242	383 229	369 216	357 205	345 194	333 184	322 175	312 167 301	302 159 370	151	144	137	131	125	120 315
		21	32		516 319	498 302	480 285 531	463 <mark>270</mark> 512	447 256 495	432 243 478	418 230 462	404 219 445	391 208 430	379 1 <mark>98</mark> 416	367 189 402	356 180 389	345 1 <b>72</b> 376	335 164 364	325 1 <b>57</b> 353	1 <b>49</b> 342
	32LH10 32LH11	21	32 32	28300 31000	571 352	550 332 602	315 580	297 560	282 541	267 522	<b>254</b> 505	<b>240</b> 488	<b>228</b> 473	217 458	206 443	196 429	186 416	178 403	169 390	1 <mark>62</mark> 378
		24			625 385	363	343 688	325	308 641	292 619	277 598	263 578	251 559	239 541	227 524	216 508	206 492	196 477	187 463	179 449
	32LH12	27	32	36400	734 450	712 428	406 785	664 384	364 742	345 715	<b>327</b> 690	<b>311</b> 666	295 643	281 621	267 600	255 581	243 562	232 544	221 527	211 511
	32LH13	30	32	40600	817 500	801 480	461	771 444	420	397	376	354	<b>336</b> 688	319 665	<b>304</b> 643	288 622	<b>275</b> 602	262 583	<b>249</b> 564	238 547
	32LH14	33	32	41800	843 515	826 495	810 476	795 458	780 440	766 417	738 395	713 374	355	337	321	304	290	276	264 616	251 597
	32LH15	35	32	43200	870 532	853 <mark>511</mark>	837 <mark>492</mark>	821 473	805 454	791 438	776 422	763 407	750 393	725 374	355	678 338	656 322	635 306	292	279
	2011107		00	42-56	57	58	59	60	61	62	63	64	65	66	<b>67</b>	68	69	<b>70</b>	<b>71</b>	<b>72</b>
	36LH07	16	36	16800	292 177	283 168	274 160	266 153	258 1 <b>46</b>	251 140	244 1 <b>34</b>	237 128	230 122	224 117	218 112	212 107	207 103	201 99	196 <mark>95</mark>	191 <mark>91</mark>
	36LH08	18	36	18500	321 194	311 185	302 176	293 168	284 160	276 153	268 146	260 140	253 1 <b>34</b>	246 1 <b>28</b>	239 1 <b>23</b>	233 118	227 113	221 109	215 104	209 100
	36LH09	21	36	23700	411 2 <b>47</b>	398 235	386 224	374 214	363 204	352 195	342 186	333 179	323 171	314 163	306 1 <b>57</b>	297 150	289 1 <b>44</b>	282 138	275 133	267 127
	36LH10	21	36	26100	454 273	440 260	426 248	413 236	401 225	389 215	378 206	367 197	357 188	347 180	338 1 <b>73</b>	328 165	320 159	311 152	303 1 <b>46</b>	295 140
	36LH11	23	36	28500	495 297	480 283	465 269	451 257	438	425 234	412	401 214	389 205	378 196	368 188	358 180	348 173	339 166	330 1 <b>59</b>	322 153
	36LH12	25	36	34100	593 354	575 338	557 322	540 307	523 292	508 279	493 267	478	464 243	450 232	437 222	424 213	412 204	400 <b>195</b>	389 1 <b>87</b>	378 1 <b>79</b>
	36LH13	30	36	40100	697	675	654 376	634 359	615 342	596 327	579 312	562 298	546 285	531 273	516 262	502 251	488 240	475 231	463	451 213
	36LH14	36	36	44200	415 768	395 755	729	706	683 373	661 356	641 339	621 323	602 <b>309</b>	584 295	567 283	551 270	535 259	520 247	505 237	492 228
	36LH15	36	36	46600	456 809	434 795 464	412 781	392 769 434	373 744 413	721 394	339 698 375	677 358	656 342	637 327	618 312	600 299	583 286	567 274	551 263	536 252
				AND A REAL PROPERTY.	480	404	448	434	1413	554	575	1000	042	521	012	200	200	2/4	200	202

## Type HSB-36

High Shear B Deck-36" Wide Verco's New Standard B Deck Higher lateral load capacity






Standard button punch

side lap

Overlapping side lap available 24" or 30" wide — special order

	Weight (Lt	os./Sq. Ft.)	1	+ S	— S
Gage	Prime Painted	Galvanized	(In ⁴ )	(In ³ )	(In ³ )
22	1.8	1.9	.175	.187	.198
20	2.2	2.3	.216	.235	.248
18	2.8	2.9	.302	.322	.335
16	3.4	3.5	.377	.411	.417

### VERTICAL LOADS (Lbs./Sq. Ft.) HSB-36 and HSB-36 WITH SHEARTRANZ®



Vertical Webs Perforated With  $5\!\!/_{32}$  Diameter Holes Staggered  $7\!\!/_{16}$  C/C Insulation Strips in Low Flutes Field Installed

Page 19

	Abs	Noise Reduction				
125	250	500	1000	2000	4000	Coefficient
.60	.99	.92	.79	.43	.23	.80

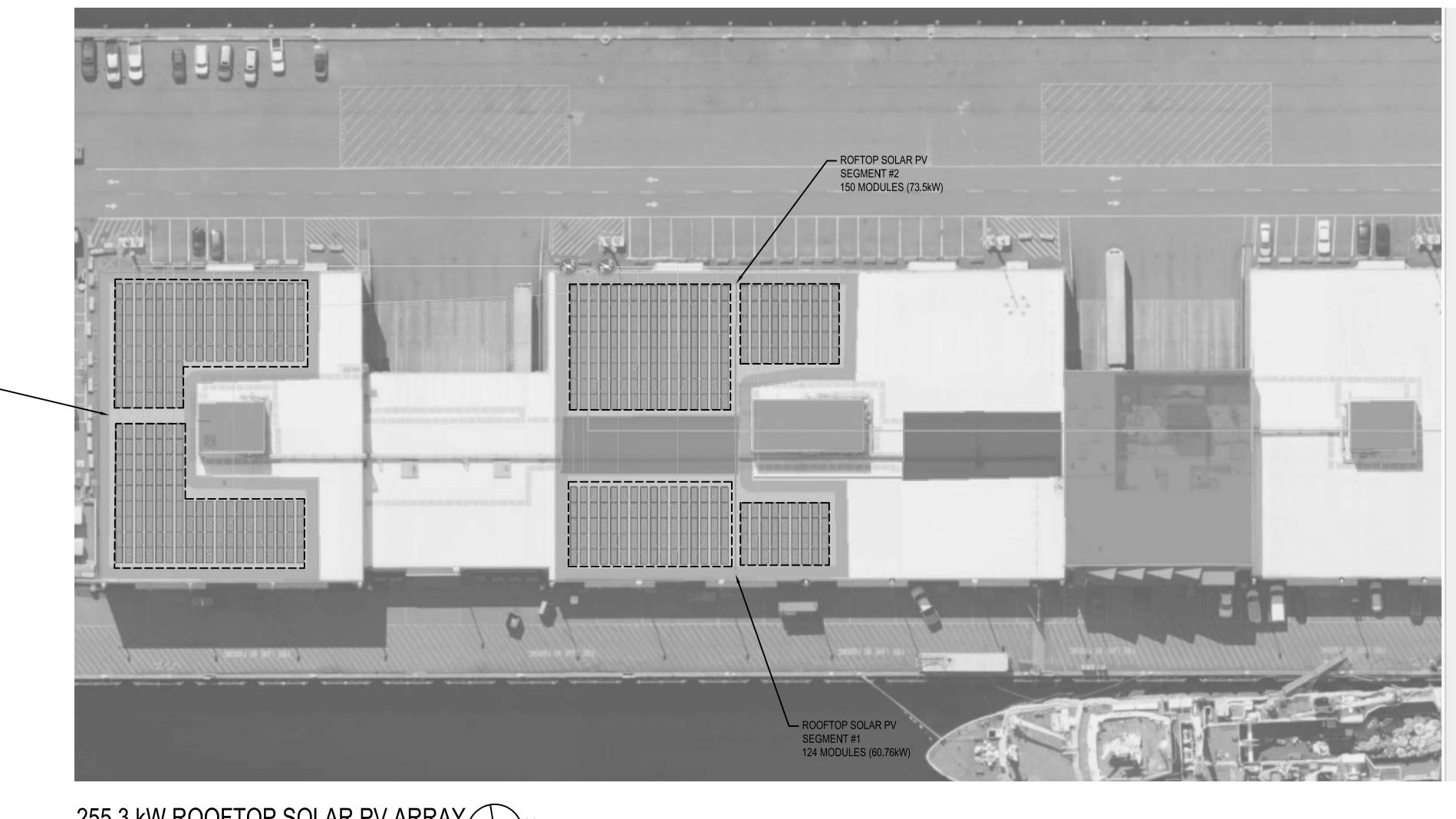
NRC Determined By Tests In Accordance With ASTM Designation C423 Conducted By Riverbank Acoustical Laboratories.

Perforations do not significantly affect Properties or Shear Values.

FACTORY MUTUAL APPROVED: STEEL ROOF DECKS, Class I Fire and I-60 or I-90 Windstorm Rated (Minimum)

Factory Mutual Approved Spans for HSB Roof Deck

Gage	22	20	18
Span*	6'-1"	6'-7"	7'-9"

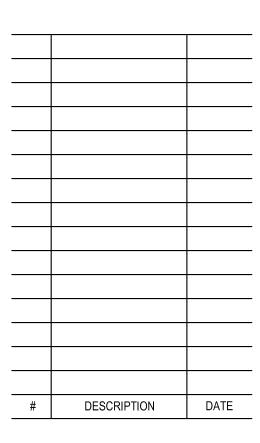

*Factory Mutual will allow these calculated spans to be extended by a maximum of 6 inches (152 mm), but only to satisfy valid column spacing requirements that could not otherwise be met. Whenever this extension is allowed, side lap fastening must occur at a maximum of 18 inch (457 mm) intervals instead of the normally required 3 feet (0.9 m).

- SDDE SEAMS SCREWED FOR F-M

#### PRIME PAINTED OR GALVANIZED

		Gage		5'-0"	5'+6"	6'-0"	6'-6"	7'-0"	7′-6″	8′-0″ ;	8′-6″	9'-0"	9'-6"	10'-0"
		22	s Δ	114 92	94 69	79 53	67 42	58 34	51 27	44 22	39 19	~		
	Simple	20	s Δ	143 113	118 85	99 66	85 52	73 41	64 34	56 28 1	49 23	44 19		
	Span	18	S A	196 159	162 119	136 92	116 72	100 58	87 47	76 39 ~	68 32	60 27	54 23	49 20
Pa	rameters	S:						7	111 59	98 48	86 40	77 34	69 29	62 25
	= 15 ps = 25 ps								54	47	42	37		
	= 25 ps st spacin		2" oc						67	59 —	52 	47 47	42 40	38 34
De	ck Capa	city = {	54 psf					<b>4</b> -1/-	91 —	80° « —	70	63 	56 56	51 48
Со	ntrolling	Limit §	State =	= DL +	SL = 4(	) psf		9	113 —	99 —	88 —	78 —	70 70	63 60
	mmary -					1	Additio		67 51	59 42	52 35	46 30		•
	ad loadir			accom	mouale	; 14 psi	auunu		84 63	74 52	65 44	58 37	52 31	47 27
No	te, deck	does r	not co	ntrol th	e desig	n.		D 9	113 89	99 73	88 61	79 51	71 44	64 37
		16	s Δ	317 —	262	220 216	188 170	162 136	141 111	124 91	110 76	98 64	88 54	79 47

See page 14, item 1 on how to use this table.




255.3 kW ROOFTOP SOLAR PV ARRAY

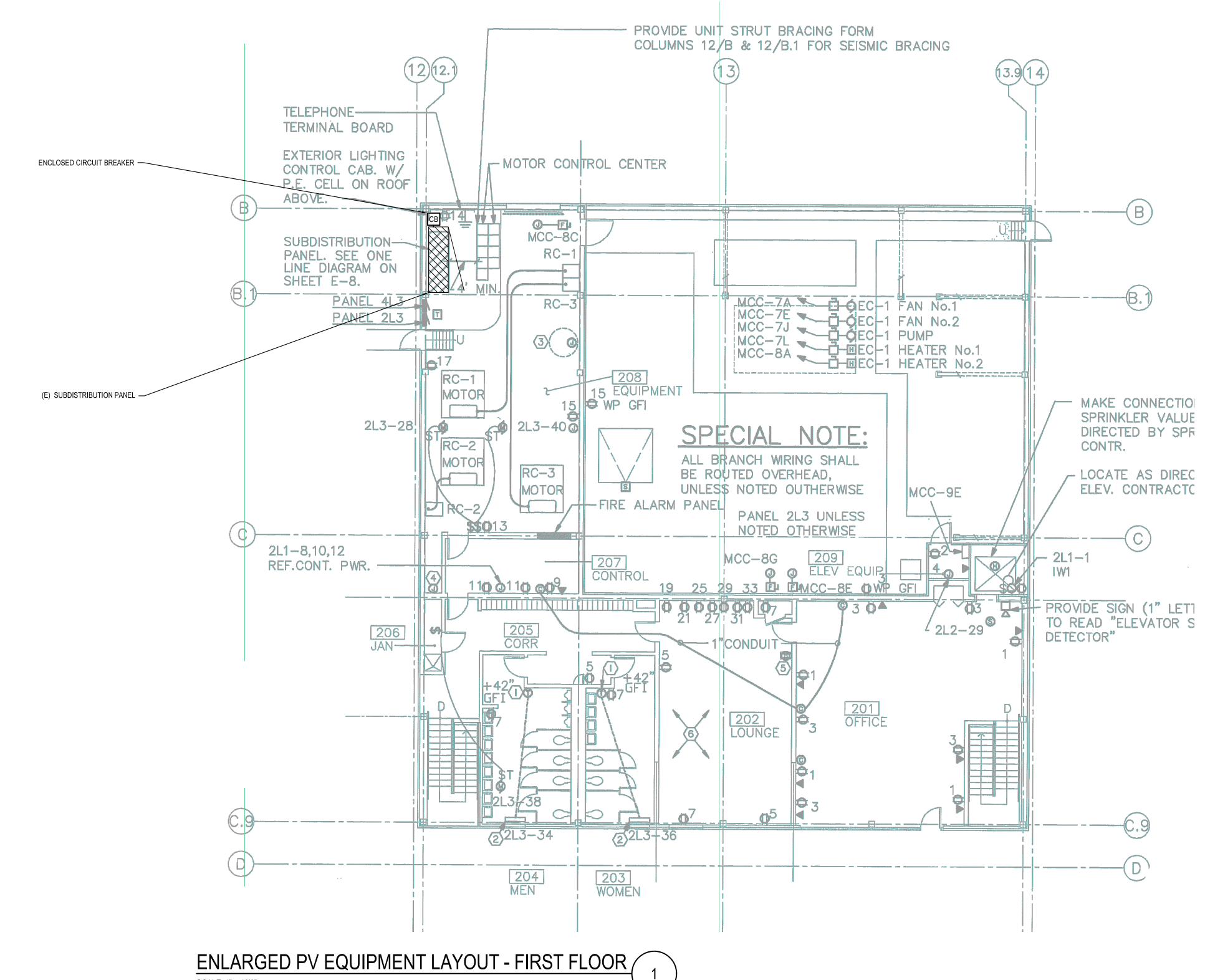
ROOFTOP SOLAR PV SEGMENT #3 240 MODULES (117.6kW) ———







# BUILDING C-175 PORT OF SEATTLE




Project: Contents: B23-24007

# ROOFTOP SOLAR PV MODULE LAYOUT

Drawn: JC Checked: TC Date: 12/19 12/19/24 Sheet Number:

E1.0



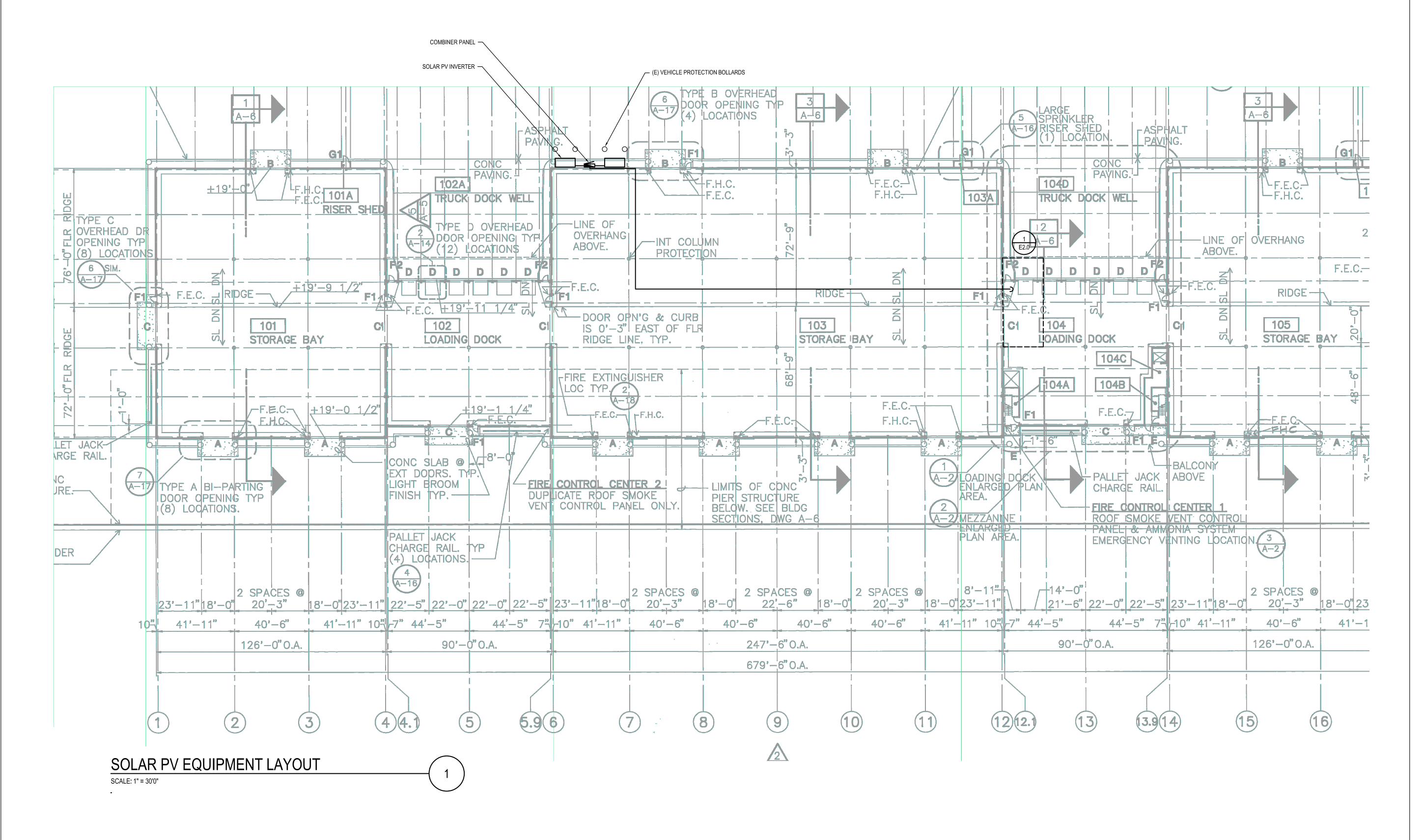
SCALE: 1" = 10'0"

Joseph Cauilan



#	DESCRIPTION	DATE

# BUILDING C-175 PORT OF SEATTLE




Project: B23-24007 Contents:

SOLAR PV EQUIPMENT LAYOUT

Drawn: JC Checked: TC Date: 12/19/24 Sheet Number:





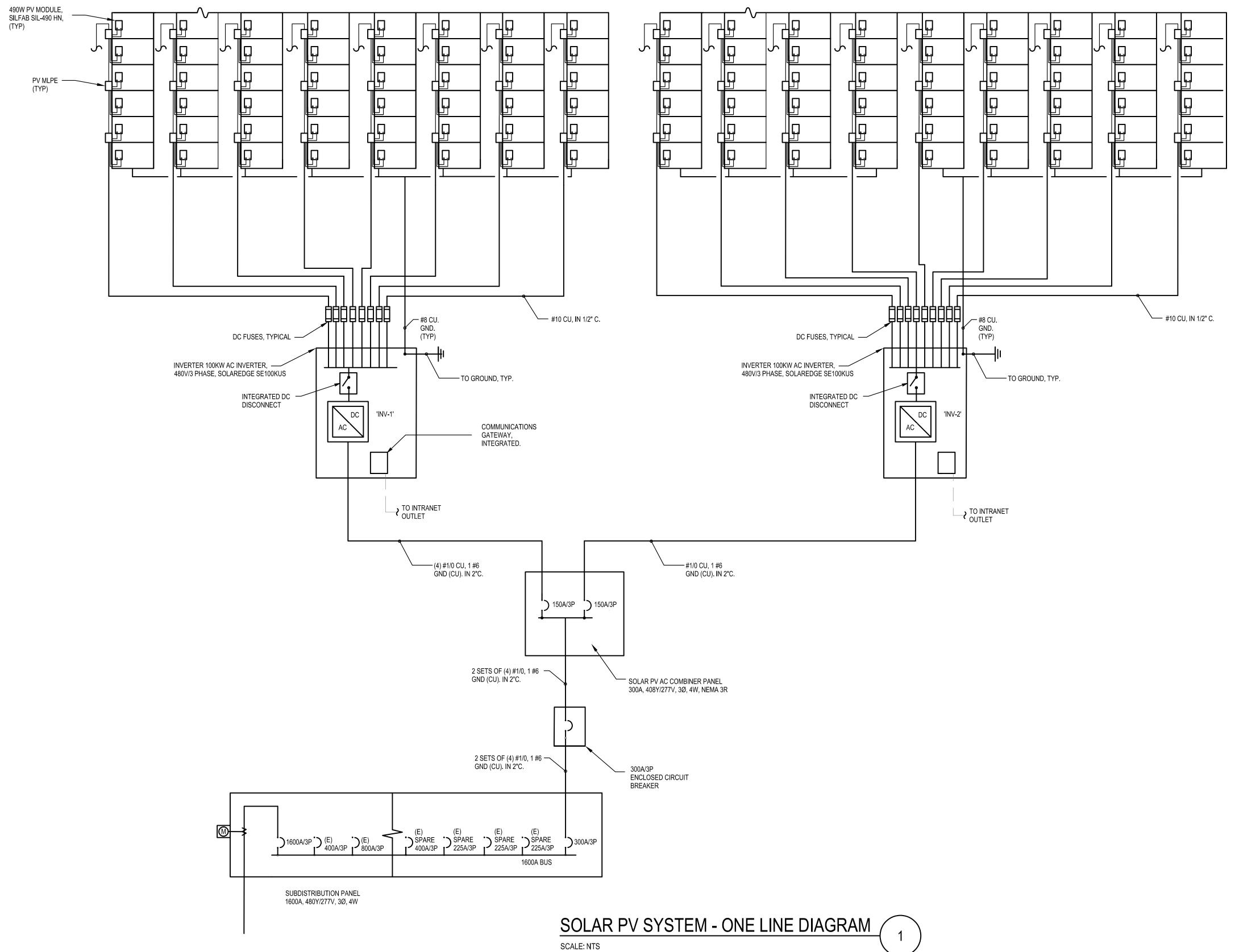
Joseph Cauilan

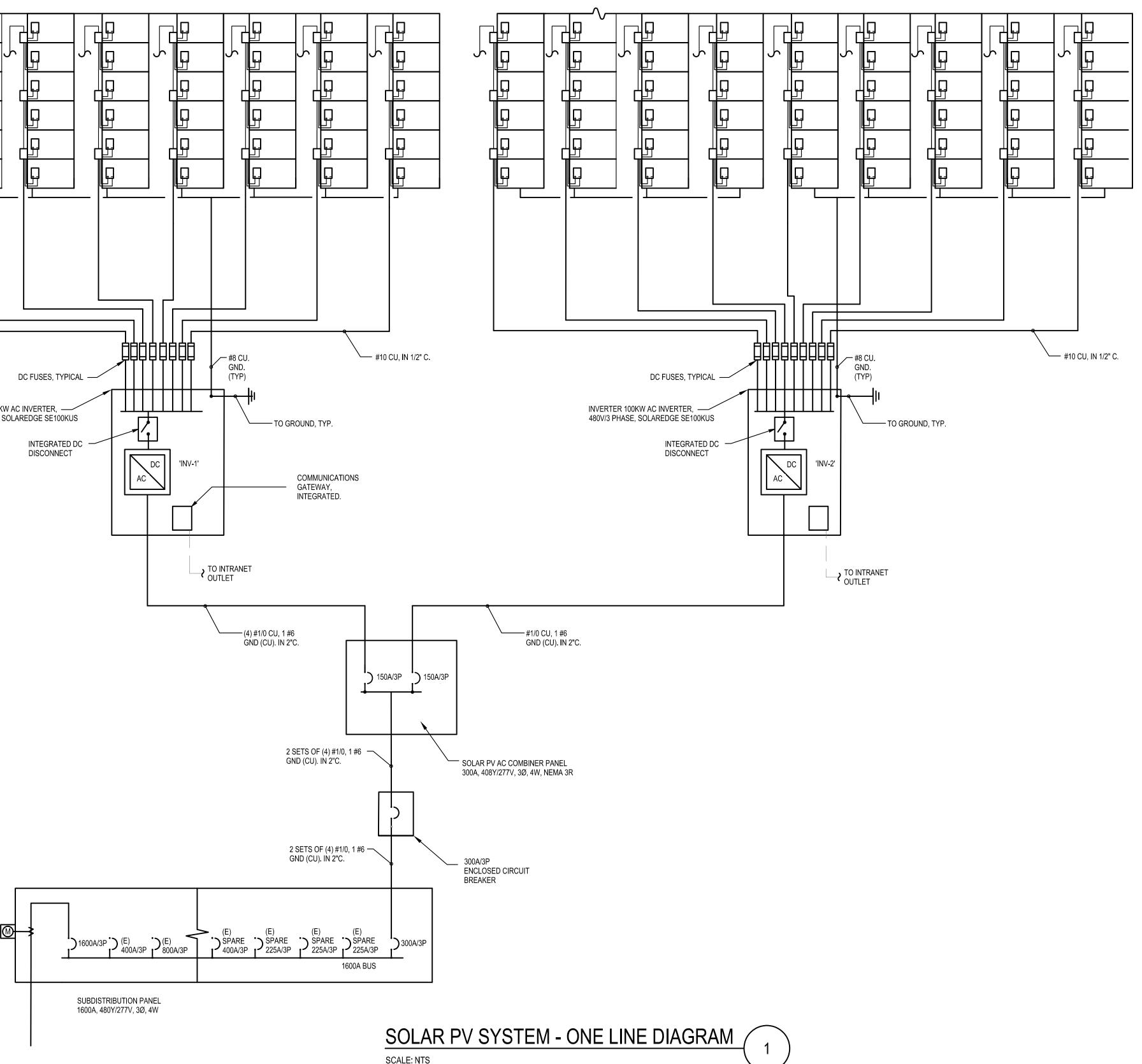
SÄZÄN GROUP 600 Stewart St., Ste 1400 Seattle, Washington 98101 Tel 206.267.1700 Fax 206.267.1701 SAZAN # XXX-XXXX

#	DESCRIPTION	DATE

# BUILDING C-175 PORT OF SEATTLE



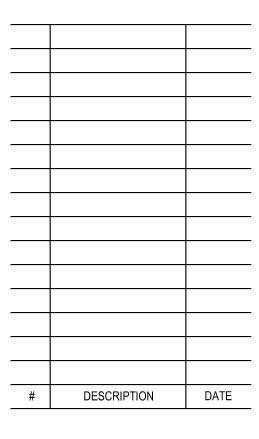

Project: B23-24007 Contents:


SOLAR PV EQUIPMENT LAYOUT

Drawn:JCChecked:TCDate:12/19/24Sheet Number:

**E2.1** 

ROOFTOP SOLAR ARRAY ON INVERTER #1 - 117KW DC 240 MODULES






Joseph Cauilan

ROOFTOP SOLAR ARRAY ON INVERTER #2 - 134.26KW DC 274 MODULES

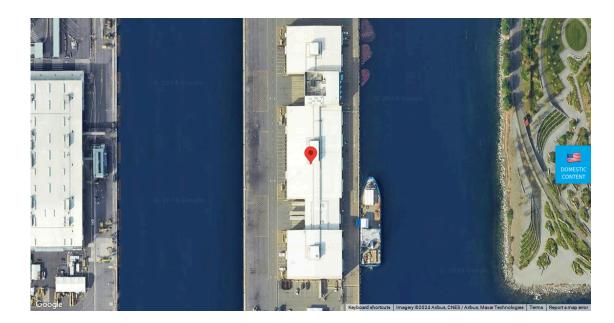




# **BUILDING C-175** PORT OF SEATTLE



Project: Contents: B23-24007


# SOLAR PV SYSTEM -ONELINE DIAGRAM

Drawn: JC Checked: TC 12/19/24 Date: Sheet Number:





Project Details			
Name	C-175	Date	12/06/2024
Location	2001 West Garfield Street, Seattle, WA 98119	Total modules	521
Module	Silfab: SIL-490 HN (35mm)	Total watts	255,290
Dimensions	Dimensions: 89.09" x 40.83" x 1.38" (2263.0mm x 1037.0mm x 35.0mm)	ASCE code	7-16



Bulding Information           Building Information         30.0 t         Elevation         15.0 t           North-south         350.0 t         Elevation         15.0 t           Roof slope         0.0 t         Roof manufacturer         0.0 in           Roof material         EPD         Roof manufacturer         n/a           Color         n/a         Thickness         n/a           BY Parameters         n/a         n/a         n/a           Statese         10 ¹ Biok wight         15.0 t           Bock size         10 ² Roof manufacturer         n/a           Statese         112         Seisnic design         file           Statese         112         Seisnic Design Category         0.0 t           Statese         112         Seisnic Design Category         0.0 t           Ballat Relocation         Ne         Seisnic Design Category         0.0 t	Load Conditions					
Building information Beight 300 f Bevarion Signal	Risk category		I	Ground snow load		20 psf
Height       30.0 t       Elevation       15.0 t         North-south       350.0 t       East-west       150.0 t         Roof slope       1°       Parapet height       0.0 in         Fire setback       6.0 t       Parapet thickness       N/A         Roof material       EPDM       Roof manufacturer       n/a         Color       n/a       n/a       n/a         Bt Parameters       10.° d       Seisnic design       proscriptive detection (Sps)         Spectral Acceleration (Sps)       1.112       Seisnic Design Category       0.1 t         Blats Relocation       Yes       Supplemental Chasis       Yes         Prescriptive Method Setuback       Yes       Supplemental Chasis       Yes	Wind speed		92 mph	Wind exposure		С
Height       30.0 t       Elevation       15.0 t         North-south       350.0 t       East-west       150.0 t         Roof slope       1°       Parapet height       0.0 in         Fire setback       6.0 t       Parapet thickness       N/A         Roof material       EPDM       Roof manufacturer       n/a         Color       n/a       n/a       n/a         Bt Parameters       10.° d       Seisnic design       proscriptive detection (Sps)         Spectral Acceleration (Sps)       1.112       Seisnic Design Category       0.1 t         Blats Relocation       Yes       Supplemental Chasis       Yes         Prescriptive Method Setuback       Yes       Supplemental Chasis       Yes						
North-south       350.1 ↓       East-west       150.0 ft         Roof slope       1°       Parapet height       0.0 in         Fire setback       6.0 ft       Parapet thickness       N/A         Roof material       EPD       Roof manufacturer       n/a         Color       n/a       Thickness       n/a         BK Parameters       10°       Seisnic design       n/a         Stock size       10°       Seisnic design       15.0 ts         Spectral Acceleration (Sps)       112       Seisnic Design Category       0.1 ts         Blaks Relocation       Nes       Supplemental Chasis       Yes         Prescriptive MethodSetbacks       Yes       Supplemental Chasis       Yes	Building Information					
Roof slope       1°       Parapet height       0.0 in         Fire setback       6.0 t       Parapet thickness       N/A         Roof material       EPDM       Roof manufacturer       n/a         Color       n/a       Thickness       n/a         Bock size       10°       Seisnic design       Prescriptive Method         Block size       10°       Seisnic design       15.50 ls         Spectral Acceleration (Sps)       1.112       Seisnic Design Category       0         Blatst Relocation       Yes       Supplemental Chasis       Yes         Prescriptive Kethod       Yes       Supplemental Chasis       Yes	Height	30	0.0 ft	Elevation		15.0 ft
Fire setback       6.0 ft       Parapet thickness       N/A         Roof material       EPDM       Roof manufacturer       n/a         Color       n/a       Thickness       n/a         BX Parameters       Image       10°       Seismic design       Pescriptive Method         Block size       Half       Block weight       15.50 lbs       Image         Spectral Acceleration (Sps)       1.112       Seismic Design Category       0.1 ft         Blalast Relocation       Yes       Supplemental Chasis       Yes	North-south	3	50.0 ft	East-west		150.0 ft
Roof material       EPDM       Roof manufacturer       n/a         Color       n/a       Thickness       n/a         Bioch size       10°       Seismic design       Prescriptive Method         Block size       Half       Block weight       5.50 lbs         Calculations       Rectangular       Setback       o.112       Setback         Blakst Relocation       Yes       Supplemental Chasis       Yes       Supplemental Chasis	Roof slope	1	0	Parapet height		0.0 in
Color       n/a       Tickness       n/a         BX Parameters       10°       Seisnic design       Prescriptive Method         Block size       10°       Block weight       15.0 lsc         Spectral Acceleration (Sp_s)       1.112       Seisnic Design Category       0         Calculations       Rectangular       Steback       6.0 ft         Blaks Relocation       Yes       Supplemental Chasis       Yes	Fire setback	6.	.0 ft	Parapet thickness		N/A
BX ParametersTit angle10°Seimic designPrescription MethodBlock sizeHalfBlock weight15.0 lbsSpectral Acceleration (Sps)1.12Seimic Design Category0CaculationsRectangularSetback6.0 ftBalast RelocationYesSupplemental ChasisYesPrescriptive Methods/YesYesYes	Roof material	E	PDM	Roof manufacturer		n/a
Tit angle10°Seisnic designPrescriptive MethodBlock sizeHalfBlock weight1.50 lbsSpectral Acceleration (Sps)1.12Seisnic Design CategoryDCalculationsRectangularSetbackSetback0.0 ftBallast RelocationYesSupplemental ChasisYesPrescriptive Method SetbacksVestbacksVestbacksVestbacks	Color	n/	/a	Thickness		n/a
Tit angle10°Seisnic designPrescriptive MethodBlock sizeHalfBlock weight1.50 lbsSpectral Acceleration (Sps)1.12Seisnic Design CategoryDCalculationsRectangularSetbackSetback0.0 ftBallast RelocationYesSupplemental ChasisYesPrescriptive Method SetbacksVestbacksVestbacksVestbacks						
Block size       Half       Block weight       15.50 lbs         Spectral Acceleration (Sps)       1.112       Seismic Design Category       D         Calculations       Rectangular       Setback       6.0 ft         Ballast Relocation       Yes       Supplemental Chasis       Yes	BX Parameters					
Spectral Acceleration (Sps)       1.112       Seismic Design Category       D         Calculations       Rectangular       Setback       6.0 ft         Ballast Relocation       Yes       Supplemental Chasis       Yes         Prescriptive Method Setbacks       Ves       Supplemental Chasis       Ves	Tilt angle		10 °	Seismic design		Prescriptive Method
Calculations     Rectangular     Setback     6.0 ft       Ballast Relocation     Yes     Supplemental Chasis     Yes	Block size		Half	Block weight		15.50 lbs
Ballast Relocation     Yes     Supplemental Chasis     Yes       Prescriptive Method Setbacks	Spectral Acceleration (S _{DS} )		1.112	Seismic Design Category		D
Prescriptive Method Setbacks	Calculations		Rectangular	Setback		6.0 ft
	Ballast Relocation		Yes	Supplemental Chasis		Yes
Between Arrays 1' 3.2" Array to Fixed Object 2' 6.4" Array to Roof Edge 5' 0.8"	Prescriptive Method Setbacks					
	Between Arrays	1' 3.2"	Array to Fixed Object	2' 6.4"	Array to Roof Edge	e 5' 0.8"

28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

BX BX			(#140559	91)
----------	--	--	----------	-----

# 28357 INDUSTRIAL BLVD., HAYWARD, CA 94545

Panels: 521 Chassis	s: 655 Blocks: 31	.00 Ancho	ors: 0												
	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 10.84 8.05	8.05 8.05	10.54										8 8	8 6	;	8 8
2 8.05 5.92	5.92 5.92	4.8 4 5										B 10.84	8.05	8.05	10.84
3 8.05 5.92	5.92 5.92	4.8										8.05	5.92	5.92	8.05
4 8.05 5.92	5.92 5.92	4.8										8.05	5.92	5.92	8.05
4         6         4           5         8.05         5.92	5.92 5.92	4 2										8.05	5.92	5.92	8.05
4         6         4           6         8.05         5.92	5.92 5.92	4 2										8.05	5.92	5.92	8.05
<b>4 6 4</b> 7 8.05 5.92	5.92 5.92	4 2										4 8.05	5.92	5.92	8.05
<b>4 6 4</b> 8 8.05 5.92	5.92 5.92	4 2										<b>4 8</b> .05	5.92	5.92	8.05
<b>4 6 4 9 8.05 5.92</b>	5.92 5.92	4 5										8.05	5.92	5.92	8.05
8 8 6		5 8										8 8			8 8
10 10.84 8.05 8 8 4	8.05 8.05	6.08										10.84 8 8	8.05	8.05	10.84 8 8
	7	7 7	8		8						8	8 8	8 8		8 8
12 10.84 8.05 8 8 6	8.05 8.05	6.75	6.75	6.75	10.54						10.54	8.05	8.05	8.05	10.84
13 8.05 5.92 8 6 4	5.92 5.92	3.73	3.73	3.73	4.8						4.8	5.92	5.92	5.92	8.05
14 8.05 5.97	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97	5.97	5.97	8.05
15 7.71 5.97	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
16 7.71 5.97	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
7         6         4           17         7.71         5.97	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
<b>7 6 4 18</b> 7.71 <b>5.97</b>	5.97 5.97	5.97	5.97	5.97	7.71						5	5.97	5.97	5.97	7.71
<b>7 6 4 19</b> 7.71 5.97	5.97 5.97	5.97	5.97	5.97	7.71						5	5.97	5.97	5.97	7.71
<b>8 6 4 20</b> 7.71 <b>5.97</b>	5.97 5.97	5.97	5.97	5.97	7.71						4	5.97	5.97	5.97	5 <u>5</u> 7.71
<b>7 6 4 21</b> 7.71 5.97	5.97 5.97	4 <b>4</b> 5.97	5.97	5.97	7.71						5	5.97	. 2	5.97	7.71
8 6 4	4	4 4	4		5 7						4	6 2		, (	5 5
22 7.71 5.97 8 6 4	5.97 5.97	5.97 4 4	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
23 7.71 5.97	5.97 5.97	5.97 4 4	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
24 7.71 5.97 7 6 4	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97 6	5.97	5.97	7.71
25 7.71 5.97 8 6 4	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
26 7.71 5.97	5.97 5.97	5.97	5.97	5.97	7.71						7.71	5.97	5.97	5.97	7.71
27 9.85 7.71	7.71 7.71	7.71	7.71	7.71	9.47						9.47	7.71	7.71	7.71	9.85
8 8 8 28	8	[ [	8		8						8	8 8	8		8 8
29															
30															
31															
32															
33															
34															

39

\$	8 8	2	8	8	8 8									8
42	16.24	11.06	11.06	11.06	16.24									
-	8 8	5	7		8 8									8
43	5.01	4.41	4.41	4.41	5.01									
-	8		2	2	3 8									7
44	5.01	4.41	4.41	4.41	5.01									
45	5.01	4.41	4.41	4.41	5.01									2
45	5.01	4.41	4.41	4.41	3 2									2
46	5.01	4.41	4.41	4.41	5.01									
	2 3	3	2	2	3 2									2
47	5.01	4.41	4.41	4.41	5.01									5
	3		2	2	3 2									2
48	5.01	4.41	4.41	4.41	5.01									5
	2 3		2	2	3 2									2
49	5.01	4.41	4.41	4.41	5.01									5
	5.01	4.41	4.41	4.41	5.01									2
50	5.01	4.41	4.41	4.41	5.01									2
51	5.01	4.41	4.41	4.41	5.01									
	2 3		2	2	3 3									2
52	5.01	4.41	4.41	4.41	5.01									5
	3 3		2	2	3 2									2
53	5.01	4.41	4.41	4.41	5.01	_			 					
	2		2	2	3			8 8		3 6		6	6	5
54	5.01	4.41	4.41	4.41	4.41	10.72	10.72	16.24	12.72	10.72	10.72	10.72	10.72	4
55	5.01	4.41	4.41	4.41	4.41	4.41	4.41	5.01	4.59	4.41	4.41	4.41	4.41	
55	3.01	4.41	4.41	4.41	4.41	4.41	4.41	3 8	6	4.41	4.41	4.41	9	
56	5.01	4.41	4.41	4.41	4.41	4.41	4.41	5.01	4.59	4.41	4.41	4.41	4.41	4
-	2		2	2	2 2		2	3 2	2 3	3	2	2	2	2
57	5.01	4.41	4.41	4.41	4.41	4.41	4.41	5.01	4.59	4.41	4.41	4.41	4.41	4
	3 3	5	2	2	2 4		2	3 2	2 3		2	2	2	2
58	5.01	4.41	4.41	4.41	4.41	4.41	4.41	5.01	4.59	4.41	4.41	4.41	4.41	4
8	8		2	2	2		2	3 8				2	2	2
59	5.01	4.41	4.41	4.41	4.41	4.41	4.41	5.01	4.59	4.41	4.41	4.41	4.41	

* If any changes are made to panel placement or location relative to roof edges, the ballast plan must be recalculated.

#### Sliding Group Information

Sliding group	Module count	Anchor count	Chassis count	Block count	Dead load	Area	PSF
A	50	0	66.00	339.00	8,440.32	1,728.91	4.88
В	36	0	50.00	297.00	6,909.88	1,250.56	5.53
С	128	0	153.00	857.00	21,359.29	4,355.33	4.90
D	80	0	102.00	578.00	14,039.50	2,721.22	5.16
E	116	0	144.00	523.00	15,452.52	3,957.64	3.90
F	111	0	140.00	506.00	14,883.14	3,807.15	3.91

#### Ballast and Anchors

Module count	521	Chassis count	655	Block count	3,100
Wind Anchors	0	Seismic Anchors	n/a	Anchors needed	0
Block weight	48,050.00 lbs	Components weight	33,034.65 lbs	Total weight	81,084.65 lbs
Area	17,820.81 sq. ft			Ground Coverage Ratio	0.74
Avg dist dead load	4.55 psf			Max chassis weight (Incl. 1 Module)	186.11 lbs

8

16.24 8

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

5.01

6.57 8

8

11.06

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

5.01

11.06

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

4.41

5.01



Bill of Materials		
Part	Spares	Qty
BX Components		
BX-10D-P1 BX Chassis 10 deg	0	655
BX-TCL-35MM-M1 BX Top Clamp, 35mm, Mill	0	2438
BX-BCL-M1 BX Bottom Clamp w/ Hardware	0	2438
BX-RB38-M1 38" Row Bonding Jumper	0	83
PV-LUG-02-A1 PV Module Grounding Lug	0	6
BX-MB8-M1 8" Module Bonding Jumper	0	432
QMAFBU-A-25 Accessory Frame Bracket, Universal, Mill	0	261



#### Assumptions

The results produced by IronRidge's Design Assistant are only valid if all the following conditions are met and the design parameters were entered accurately.

#### **Design Parameters**

- Design Assistant ballast calculations assume rectangular buildings.
- Building must be less than 60ft high, or building height must be less than the least horizontal dimension.
- Roof is a single level (e.g. no penthouse that extends above roof for part of the area).
- Roof has sharp eaves.
- Calculations assume a setback around each obstruction equal or larger than the height of the obstruction.
- •
- Calculations assume that the array is aligned to the NW corner of the roof plus the setback. Panel edges must be parallel to the roof edges. Maximum rows and columns for the array will be calculated to ensure that setbacks on the east and south are at least as large as the setbacks on the north and west. Verify your minimum setback requirements with your local AHJ. If the building could hold an array larger than the maximum size array the Design Assistant can configure (60 rows x 60 columns), the setback will be expanded on the east and south sides of the array to extend all the way to the edge of the roof beyond the maximum sized array.
- Design Assistant does not account for any accelerated wind flow due to surrounding buildings.
- Defaulted at Soil Type D for seismic calculations.

#### Seismic Design

- · Prescriptive setbacks are calculated using the approach from ASCE 7-16.
- Minimum delta_{mpv} of 2 feet.
- Distance between a solar array and a roof edge without a qualifying parapet is 2.0 *  $I_e$  * delta_{mpv} •
- Ie, seismic importance factor, is from ASCE Section 1.5.1, Table 1.5-2.

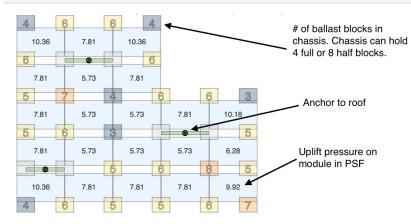
#### Component/System Properties

- · By default, anchor placements are made using the attachment's capacity of 525 uplift/392 lateral (lbs). It is the user's responsibility to verify reaction load capacity of the structural decking. If the structural decking cannot sustain these loads, the actual limits can be entered into Design Assistant (Anchor uplift strength/Anchor lateral strength).
- Concrete ballast block:
  - Manufactured per ASTM C 1491 (Standard specification for concrete pavers).

  - Manufactured to resist freeze-thaw as required per local conditions.
     Design Assistant defaults block weights to 15.5 lbs (half block) and 32 lbs (full block). User is responsible for adjusting these weights to match actual blocks sourced.
- Chassis Weight: ~ 4.7 lbs
- E-W Module Gap: .375"
- Inter-Row Spacing: 5 Degrees = 10" 10 Degrees = 13"
- Chassis overhang:
- 5 Degrees
  - North ~ 19" and South ~ 15.5" • 10 Degrees
  - North ~ 17" and South ~ 20.5"
- Coefficients of Static Friction under wet conditions for Tested Roof Types:
  - TPO = .69
  - KEE = .60
  - PVC = .60
  - Built Up = .50
  - Modified Bitumen = .50 EPDM = .73 0

#### Ratings/Certifications

- UL 2703 Listed (See installation manual for more details)
  Class A System Fire Rating Per UL 1703
- Designed and Certified for Compliance with the International Building Code, ASCE/SEI-7, and SEAOC PV Guidelines
- Wind Tunnel Testing by I.F.I
- User to verify module manufacturer's clamping location and pressure limits.


#### Additional Notes

- Installer must clean roof of all debris before installing BX chassis and/or slip sheets. It is recommended to blow off debris or loose roofing material from Modified Bitumen or Built Up roofs
- If array moves due to an earthquake, it shall be restored to its original position.
- If anchors are damaged due to an earthquake, they shall be replaced.
- Building engineer should evaluate the effect of snow loading and drifts on the roof prior to installation of the array.
- Site specific engineering is required if the system design exceeds the current capabilities of IronRidge's Design Assistant. Please contact technical support for additional assistance. IronRidge's technical support can be reached by the following:
- Email: techsupport@ironridge.com
  - Phone: 800-227-9523 Ext. 1



#### Roof Section Ballast Plan Legend

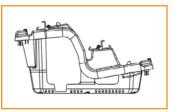
#### Example Array



### CHECKLIST

#### **PRE-INSTALLATION**

□ Verify module compatibility. See <u>Page 11</u> for info.


#### **TOOLS REQUIRED**

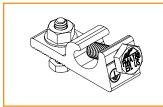
- □ Cordless Drill (optional)
- □ Torque Wrench (0-250 in-lbs)
- □ 9/16" Socket
- 7/16" Socket
- □ 1/2" Socket
- String Chalk Line

#### TORQUE VALUES

- □ Top Clamp Nuts (1/2" Socket): 120 in-lbs
- □ 5/16" MLPE Flange Bolts (1/2" Socket): 60 in-lbs
- □ 5/16" String Inverter Mount Bolts (1/2" Socket): 80 in-lbs
- □ 5/16" L-Foot to Chassis Nuts (1/2" Socket): 120 in-lbs
- □ 3/8" T-Bolt Bonding Hardware (7/16" Socket): 250 in-lbs
- □ 1/4" String Inverter Mount Hdw (7/16" Socket): 80 in-lbs
- □ Flat Roof Attach to L-Foot Hdw (9/16" Socket): 250 in-lbs
- □ Module Grounding Lug Nut (1/2" Socket): 60 in-lbs
  - Grounding Lug Terminal Screws (3/8" Socket): 20 in-lbs

#### COMPONENTS




5° BX Chassis

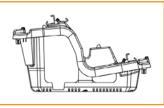


8" Module Bonding Jumper Single Use Only

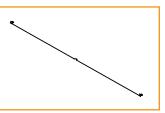


Bottom Clamp

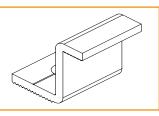



PV Module Grounding Lug




Cable Tie







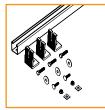

10° BX Chassis



38" Row Bonding Jumper Single Use Only



Top Clamp (Height Varies)






**MLPE Mounting Hardware** 



Edge Clip Cable Tie



Flat Roof Attachment Kit

(JayBox Q

Jaybox



## SILFAB COMMERCIAL



SIL-490 HN



# ENGINEERED FOR COMMERCIAL & UTILITY PROJECTS

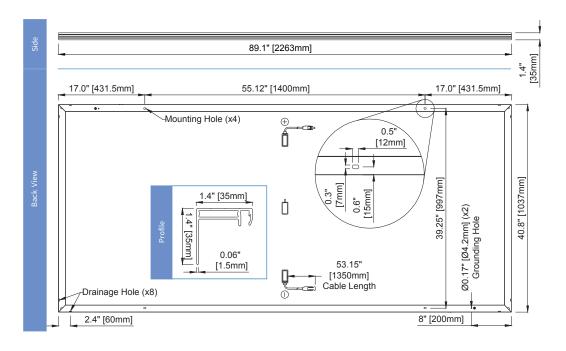
Superior performance and proven reliability from a trusted source.







ELECTRICAL SPECIFICATIONS		490 HN						
Test Conditions		STC	NOCT					
Module Power (Pmax)	Wp	490	362					
Maximum power voltage (Vpmax)	V	45.23	41.61					
Maximum power current (Ipmax)	А	10.83	8.69					
Open circuit voltage (Voc)	V	53.96	49.64					
Short circuit current (Isc)	А	11.36	9.12					
Module efficiency	%	20.9%	19.3%					
Maximum system voltage (VDC)	V	15	500					
Series fuse rating	А	2	20					
Power Tolerance	Wp	0 to	p +10					


Measurement conditions: STC 1000 W/m² • AM 1.5 • Temperature 25 °C • NOCT 800 W/m² • AM 1.5 • Measurement uncertainty ≤ 3% Sun simulator calibration reference modules from Fraunhofer Institute. Electrical characteristics may vary by ±5% and power by 0 to +10W.

MECHANICAL PROPERTIES / CO	MPONENTS	METRIC		IMPERIAL				
Module weight		25.8kg ±0.2kg		56.9lbs ±0.4lbs	9lbs ±0.4lbs			
Dimensions (H x L x D)		2263 mm x 1037 mm x 35 mm	1	89 in x 40.8 in x 1.37 i	in x 40.8 in x 1.37 in			
Maximum surface load (wind/snow)*		2400 Pa rear load / 5400 Pa fro	ont load	50.1 lb/ft² rear load /	1 lb/ft² rear load / 112.8 lb/ft² front load			
Hail impact resistance		ø 25 mm at 83 km/h		ø 1 in at 51.6 mph				
Cells		156 Half cells - Si mono PERC 9 busbar - 83 x 166 mm		156 Half cells- Si mor 9 busbar - 3.26 x 6.53				
Glass		3.2 mm high transmittance, to DSM antireflective coating	empered,	0.126 in high transmi DSM antireflective co		pered,		
Cables and connectors (refer to install	ation manual)	1350 mm, ø 5.7 mm, MC4 fron	n Staubli	53.15 in, ø 0.22 in (12	AWG), MC4	from Staubli		
Backsheet High durability, superior hy fluorine-free PV white back			olysis and UV resistance, multi-laget	ver dielectric film,				
Frame Anodized Aluminum (Silve								
Bypass diodes 3 diodes-30SQ045T (45V m			DC blocking voltage, 30A max for	vard rectified current	t)			
Junction Box		UL 3730 Certified, IEC 62790 C	Certified, IP68 rated					
TEMPERATURE RATINGS								
Temperature Coefficient Isc	+0.064 %/°C		Module product workmanship	warranty	25 years	**		
Temperature Coefficient Voc	-0.28 %/°C		Linear power performance gu	30 years				
Temperature Coefficient Pmax	-0.36 %/°C				≥97.1%	end 1st yr		
NOCT (± 2°C)	45 °C					end 12th yr end 25th yr		
Operating temperature	-40/+85 °C					end 30th yr		
CERTIFICATIONS	CERTIFICATIONS			SHIPPING	SPECS			
Product	ULC ORD C1703, UL1703, CEC listed, UL 61215-1/				Pallet:	31		
Product		rtifed, UL Fire Rating: Type 1	onia Corrosion; IEC61701:2011 Sal	Pallets Per Tru	ıck	23		
Factory	ISO9001:2015			Modules Per T	ruck	713		

* A Warning. Read the Safety and Installation Manual for mounting specifications and before handling, installing and operating modules.

12 year extendable to 25 years subject to registration and conditions outlined under "Warranty" at silfabsolar.com

PAN files generated from 3rd party performance data are available for download at: silfabsolar.com/downloads



#### SILFAB SOLAR INC.

1770 Port Drive Burlington WA 98233 USA **T** +1 360.569.4733 info@silfabsolar.com SILFABSOLAR.COM

7149 Logistics Lane Fort Mill SC 29715 USA **T** +1 839.400.4338

240 Courtneypark Drive East Mississauga ON L5T 2S5 Canada T +1 905.255.2501 F +1 905.696.0267

Silfab - SIL-490-HN+-20231221 No reproduction of any kind is allowed without permission. Data and information is subject to modifications without notice 22 ab Solar Inc., 2022. Silfab Solar* is a registered trademark of Silfab Solar Inc.

# Three Phase Inverter with Synergy Technology

# For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS



## Powered by unique pre-commissioning process for rapid system installation

- Pre-commissioning feature for automated validation of system components and wiring during the site installation process and prior to grid connection
- Easy 2-person installation with lightweight, modular design (each inverter consists of 2 or 3 Synergy units and 1 Synergy Manager)
- Independent operation of each Synergy unit enables higher uptime and easy serviceability
- Built-in thermal sensors detect faulty wiring, ensuring enhanced protection and safety

- Built-in arc fault protection and rapid shutdown
- Built-in PID mitigation for maximized system performance
- Monitored* and field-replaceable surge protection devices, to better withstand surges caused by lightning or other events
- Built-in module-level monitoring with Ethernet or cellular communication for full system visibility



*Applicable only for DC and AC SPDs



# / Three Phase Inverter with Synergy Technology

# For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS

		(	$\sim$				
MODEL NUMBER	SE80KUS	$\succ$	SE100KUS	15	E110KUS	SE120KUS	
APPLICABLE TO INVERTERS WITH PART NUMBER		7	SExxK-U	Sx8l>	xxx		UNIT
OUTPUT		7		1			
Rated AC Active Output Power	80000	Y	100000	$\boldsymbol{\prec}$	110000	120000	W
Maximum AC Apparent Output Power	80000	7	100000	イ	120000	120000	VA
AC Output Line Connections			3W + PE,	444+	PE		
Supported Grids		(	WYE: TN-C, TN-S, TN				
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-N)		Č	244 – 27	- 1			Vac
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-L)		7	422.5 – 4	80 - 5	29		Vac
AC Frequency Min-Nom-Max ⁽¹⁾		7	59.5 - 60	0 - 10	5		Hz
Maximum Continuous Output Current (per Phase, PF=1)	96.5	4	120	イ	14	4.3	Aac
GFDI Threshold		(	1	ノ			А
Utility Monitoring, Islanding Protection, Configurable Power Factor, Country Configurable Thresholds		ζ	Ye	es 🗸			
Total Harmonic Distortion		5	≤	3			%
Power Factor Range		(	±0.85	i to			
INPUT		ſ		)			
Maximum DC Power (Module STC) Inverter / Synergy Unit	140000 / 70000	7	175000 / 58300	)	210000	/ 70000	W
Transformer-less, Ungrounded		٢	Ye	es 🕥			
Maximum Input Voltage DC+ to DC-		7	100	20			Vdc
Operating Voltage Range		2	850 –	1060			Vdc
Maximum Input Current	2 x 48.25	(	3 x 40	ノ	3 x 4	48.25	Adc
Reverse-Polarity Protection		(	Ye	es )			
Ground-Fault Isolation Detection		7	167kΩ sensitivity p	er Syr	ergy Unit ⁽²⁾		
CEC Weighted Efficiency		7	98	.5			%
Nighttime Power Consumption	< 8	5		く	< 12		W
ADDITIONAL FEATURES		(		く			
Supported Communication Interfaces ⁽³⁾		x RS	485, Ethernet, Wi-Fi (d	option	al), Cellular (optic	onal)	
Smart Energy Management		(	Export Li	mitatio	on		
Inverter Commissioning	With the SetApp	nobil	e application using bu	uilt-in \	Vi-Fi access point	t for local connection	
Arc Fault Protection		Buil	t-in, User Configurable	e (Agco	ording to UL1699	B)	
Photovoltaic Rapid Shutdown System		6	NEC 2014 – 2	20 <b>23</b> , k	ouilt-in		
PID Rectifier		(	Nighttime	e, built	-in		
RS485 Surge Protection (ports 1+2)		(	Type II, field replac	ceable	integrated		
AC, DC Surge Protection		(	Type II, field replac	ceable	integrated		
DC Fuses (Single Pole)		٢	25A, inte	egrate	d		
DC SAFETY SWITCH		7		3			
DC Disconnect		6	Built	t-in			
STANDARD COMPLIANCE		5		~			
Safety	UL169	₿, U	L1741, UL1741 SA, UL17 Canadian AFCI acco			2.2#107.1,	
Grid Connection Standards		7	IEEE 1547-2018, Ru	-			
Emissions		(	FCC part				

(2) Where permitted by local regulations.

(2) Where permitted by local regulations. (3) For specifications of the optional communication options, visit the <u>Communication product page</u> or the <u>Knowledge Center</u> to download the relevant product datasheet.

# / Three Phase Inverter with Synergy Technology

# For the 277/480V Grid for North America

SE80KUS / SE100KUS / SE110KUS / SE120KUS

MODEL NUMBE	R	SE80KUS		SE100KUS	St	110KUS	SE120KUS		
APPLICABLE TO	INVERTERS WITH PART NUMBER		SExxK-USx8lxxxx						
INSTALLATION S	SPECIFICATIONS	(			)				
Number of Synergy Ur	nits per Inverter	2			1	3			
Ac Max Conduit Size	>		21	/2"			in		
Max AWG Line / PE		X	-	4/0 /	′ 1/0 🖌				
DC Max Conduit Size		5	-	1 x 3";	2 x 2" 🖌			in	
	Multi-input (SExxK-USxxxxzZ4)	8 / 4 pairs; 6-12 AW	Ĵ		12 / 4	oairs; 6-12 AWG			
DC Input Inverter/ Synergy Unit	Combined input (SExxK-USxxxxW4)	2 pairs / 1 pair, Max 2 AWG; coppe or aluminum	-	Max	~	airs / 1 pair, copper or alumir	um		
Dimensions (H x W x D	))	Ş		ergy Unit: 22 x 12.9 x 3y Manager: 14.17 x 22			i	in / mm	
Weight		>	•	Synergy Uni Synergy Mana				lb / kg	
Operating Temperature	Range	X	-	-40 to +140 /				°F/°C	
Cooling		<u> </u>	-	Fan (user re	eplaceabl	e)			
Noise		(	-	< 6	57			dBA	
Protection Rating		(		NEM	A 3R				
Mounting		<u> </u>		Brackets p	orovided				

SolarEdge is a global leader in smart energy technology. By leveraging world-class engineering capabilities and with a relentless focus on innovation, SolarEdge creates smart energy solutions that power our lives and drive future progress.

SolarEdge developed an intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. The SolarEdge DC optimized inverter maximizes power generation while lowering the cost of energy produced by the PV system.

Continuing to advance smart energy, SolarEdge addresses a broad range of energy market segments through its PV, storage, EV charging, UPS, and grid services solutions.

at in ed ne es V,

- f SolarEdge
- ♥ @SolarEdgePV
- @SolarEdgePV
- SolarEdgePV
- in SolarEdge
- 🔀 www.solaredge.com/corporate/contact

# solaredge.com

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: May 8, 2024 DS-000020-NAM Subject to change without notice.

Cautionary Note Regarding Market Data and Industry Forecasts: This brochure may contain market data and industry forecasts from certain third-party sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

# solar<mark>edge</mark>



# PV power optimization at the module level The most cost-effective solution for commercial and large field installations

- Specifically designed to work with SolarEdge inverters
- High efficiency with module-level MPPT, for maximized system energy production and revenue, and fast project ROI
- Superior efficiency (99.5%)
- Balance of System cost reduction; 50% less cables, fuses, and combiner boxes, and over 2x longer string lengths possible

- Fast installation with a single bolt
- Advanced maintenance with module level monitoring
- Module level voltage shutdown for installer and firefighter safety
- Use with two PV modules connected in series or in parallel



# / Power Optimizer P605 / P650 / P701 / P730 / P801

Power Optimizer Module (Typical Module Compatibility)	P605 (for 1 x high power PV module)	P650 (for up to 2 x 60-cell PV modules)	P701 (for up to 2 x 60/120-cell PV modules)	P730 (for up to 2 x 72-cell PV modules)	P801 (for up to 2 x 72/144 cell PV modules)						
INPUT											
Rated Input DC Power ⁽¹⁾	605	650	700*	730**	800	W					
Connection Method		Single input for series connected modules									
Absolute Maximum Input Voltage (Voc at lowest temperature)	65	ç	96	1	25	Vdc					
MPPT Operating Range	12.5 – 65	12.5	- 80	12.5	- 105	Vdc					
Maximum Short Circuit Current per Input (lsc)	14.1	11	11.75	11**	12.5***	Adc					
Maximum Efficiency			99.5			%					
Weighted Efficiency			98.6	/		%					
Overvoltage Capacity											
OUTPUT DURING OPERATION (POWER O	PTIMIZER CONNECTEI	D TO OPERATING	SOLAREDGE INVER	RTER							
Maximum Output Current			15			Adc					
Maximum Output Voltage			80			Vdc					
OUTPUT DURING STANDBY (POWER OPT	IMIZER DISCONNECTE	D FROM SOLARED	OGE INVERTER OR	SOLAREDGE INVE	RTER OFF						
Safety Output Voltage per Power Optimizer											
STANDARD COMPLIANCE											
EMC		FCC Part 15 Class B, IEC6100-6-2, IEC61000-6-3									
Safety		IE	C62109-1 Class II safet	y)							
RoHS			Yes								
Fire Safety		VDE-R-E2100-712:2013-05									
INSTALLATION SPECIFICATIONS		/									
Compatible SolarEdge Inverters		Three F	hase Inverter SE16K &	larger							
Maximum Allowed System Voltage			1000	Ť		Vdc					
Dimensions (W x L x H)	129 x 153 x 52 / 5.1 x 6 x 2	129 x 153 x 42	.5 / 5.1 x 6 x 1.7	129 x 153 x 49	.5 / 5.1 x 6 x 1.9	mm / in					
Weight	1064 / 2.3	834	/ 1.8	933	/ 2.1	gr / lb					
Input Connector		/	MC4 ⁽²⁾								
Input Wire Length		0.16 / 0.52		0.16 / 0.52,	, 0.9 / 2.95 ⁽³⁾	m / ft					
Output Connector			MC4								
Output Wire Length	Portrait Orientation: 1.4 / 4.5	()rientation:			tation: 1.2 / 3.9	m / ft					
			entation: 1.8 / 5.9		entation: 2.2 / 7.2	°C / °F					
Operating Temperature Range ⁽⁶⁾		-40 to +85 / -40 to +185									
Protection Rating		IP68 / NEMA6P 0 - 100									
Relative Humidity		0 – 100									

* For P701 models manufactured after work week 06/2020, the rated DC input is 740W.

** For P730 models manufactured after work week 06/2020, the rated DC input is 760W and the maximum lsc per input is 11.75A.

*** For P801 models manufactured in work week 40/2020 or earlier, the maximum Isc per input in 11.75A.

(1) The rated power of the module at STC will not exceed the Power Optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed.

(2) For other connector types, please contact SolarEdge.

(3) Longer input wire lengths are available for use with split junction box modules. For 0.9m/2.95ft order P730-xxxLxxx.
 (4) For ambient temperatures above +70°C / +158°F, power de-rating is applied. Refer to <u>Power Optimizers Temperature De-Rating Technical Note</u> for more details.

PV System Design Using a SolarEdge Inverter ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾		230/400V Grid SE16K, SE17 SE25K*, SE33.3K*		230/400V Grid SE27.6K*		230/400V Grid SE30K*		277/480V Grid SE33.3K*, SE40K*		
Compatible Power C	ptimizers	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	P605	P650, P701, P730, P801	
Minimum String Power Optimizers		14	14	14	14	15	15	14	14	
Length	PV Modules	14	27	14	27	15	29	14	27	
Muximum String	Power Optimizers	30	30	30	30	30	30	30	30	
	PV Modules	30	60	30	60	30	60	30	60	
Maximum Continuou	Maximum Continuous Power per String		11250		11625		12750		12750	
	Connected Power per String ⁽⁸⁾ the difference in connected power 13500 13500 15000 IOW or less)		15000	15	5000	W				
Parallel Strings of Dif	Yes									
	in Number of Power Optimizers Allowed t and Longest String Connected to the	5 Power Optimizers								

* The same rules apply for Synergy units of equivalent power ratings that are part of the modular Synergy Technology Inverter.

(5) P650/P701/P730/P801 can be mixed in one string only with P650/P701/P730/P801. P605 cannot be mixed with any other Power Optimizer in the same string.

(6) For each string, a Power Optimizer may be connected to a single PV module if 1) each Power Optimizer is connected to a single PV module or 2) it is the only Power Optimizer connected to a

single PV module in the string.
(7) For SE16K and above, the minimum STC DC connected power should be 11KW.

(8) To connect more STC power per string, design your project using <u>SolarEdge Designer</u>.

# / Power Optimizer P800p / P850 / P950 / P1100

10000710507155							
Power Optimizer Module (Typical Module Compatibility)	P800p (for up to 2 x 96- cell 5" PV modules)	P850 (for up to 2 x high power or bi-facial modules)	P950 (for up to 2 x high power or bi- facial modules)	P1100 (for up to 2 x high power or bi-facial modules)	Uni		
INPUT				<u>}</u>	<u> </u>		
Rated Input DC Power ⁽¹⁾	800	850	950	1100	X w		
Connection Method	Dual input for independently connected	Dual input for independently connected Single input for series connected m					
Absolute Maximum Input Voltage (Voc at lowest temperature)	83		125	8	<b>X</b> Vdc		
MPPT Operating Range	12.5 - 83		12.5 - 105	<u>}</u>	- Vdc		
Maximum Short Circuit Current per Input (Isc)	7	14.1	k	14.1	Add		
Maximum Efficiency		9	9.5	(	) %		
Weighted Efficiency		9.	8.6	7	<b>~</b> %		
Overvoltage Capacity				4	く		
OUTPUT DURING OPERATION (POWE	R OPTIMIZER CONNECT	ED TO OPERATING SOLA	REDGE INVERTER				
Maximum Output Current		,	18	7	Add		
Maximum Output Voltage		8	30	7	<b>≺</b> Vda		
OUTPUT DURING STANDBY (POWER (	OPTIMIZER DISCONNEC	TED FROM SOLAREDGE I	NVERTER OR SOLARED	GE INVERTER OFF	ノ		
Safety Output Voltage per Power Optimizer		1 ±	: 0.1	(	Vdo		
STANDARD COMPLIANCE				7	1		
EMC		7	コイ				
Safety		(					
RoHS		(	)				
Fire Safety		7	1				
INSTALLATION SPECIFICATIONS				>	く		
Compatible SolarEdge Inverters	Thr	Three Phase Inverter SE25K & larger	<u> </u>				
Maximum Allowed System Voltage		10	000	<u>}</u>	Vdc		
Dimensions (W x L x H)	129 x 168 x 59 / 5.1 x 6.61 x 2.32		129 x 162 x 59 / 5.1 x 6.4 x 2.3	32	/mm		
Weight		1064	/ 2.3	7	gr / I		
Input Connector		M	24 ⁽²⁾		1		
Input Wire Length	0.16 / 0.52	0.16 / 0.52, 0.9 / 2.95, 1.3 / 4.26, 1.6 / 5.24 ⁽³⁾	0.16 / 0.52, 1.3 / 4.26, 1.6 / 5.24 ⁽³⁾	0.16 / 0.52, 1.3 / 4.26 ⁽³⁾	/m /		
Output Connector		Μ	C4				
		Portrait Orientation: 1.2 / 3.9		).			
Output Wire Length	Landscape Orientation: 1.8 / 5.9	2.4 / 7.8	<b>~</b> m / ·				
Operating Temperature Range ⁽⁴⁾		-40 to +85	/ -40 to +185	7	C/		
Protection Rating		IP68 / 1	NEMA6P	7			
Relative Humidity		(	)%				

For P850/P950 models manufactured in work week 06/2020 or earlier, the maximum lsc per input is 12.5A. The manufacture code is indicated in the Power Optimizer's serial number Example: S/N SJ0620A-xxxxxxx (work week 06 in 2020)

(1) The rated power of the module at STC will not exceed the Power Optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed. (2) For other connector types, please contact SolarEdge.

(3) Longer input wire lengths are available for use with split junction box modules. For 0.9m/2.95ft order P801/P850-xxxLxxx. For 1.3m/2.95ft order P850/P950/P1100 -xxxXxxx. For 1.6m/5.24ft order P850/P950-xxxYxxx).

(4) For ambient temperatures above +70°C / +158°F, power de-rating is applied. Refer to Power Optimizers Temperature De-Rating Technical Note for more details.

						(	<u> </u>	
PV System Des Inverter ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾	ign Using a SolarEdge	230/400V Grid SE16K, SE17K	230/400V Grid SE25K*	230/400V Grid SE27.6K*	230/400V Grid SE30K*	230/400V Grid SE33.3K	277/480V Grid SE33.3K*, SE40K*	
Compatible Power	Optimizers	P800p, P850, P950	P800p, P850, P950, P1100	P800p, P850, P950, P1100	P800p, P850, P950, P1100	P800p, P850, P950 P1100	, P800p, P850, P950, P1100	7
Minimum String	Power Optimizers	14	14	14	15	14	14	
Length	PV Modules	27	27	27	29	27	27	T)
Maximum String	Power Optimizers	30	30	30	30	30	30	1
Length	PV Modules	60	60	60	60	60	60	ス
Maximum Continuo	ous Power per String	13500	13500	13950	15300	13500	15300	w
Maximum Allowed Connected Power per String ⁽⁸⁾		1 string – 15750	1 string – 15750	1 string – 16200	1 string – 17550	2 strings or less - 15750	2 strings or less – 17550	)
between strings is 2	en the difference in connected power 2,000W or less)	2 strings or more – 18500	2 strings or more – 18500	2 strings or more – 18950	2 strings or more – 20300	3 strings or more 18500	3 strings or more – 20300	])
Parallel Strings of D	Parallel Strings of Different Lengths or Orientations Yes					*	)	
	e in Number of Power Optimizers ne Shortest and Longest String Same Inverter Unit			5 Power Op	otimizers	(	-	Ś

* The same rules apply for Synergy units of equivalent power ratings that are part of the modular Synergy Technology Inverter.
 (5) P800p/P850/P950/P1100 can be mixed in one string only with P800p/P850/P950/P1100.

(6) For each string, a Power Optimizer may be connected to a single PV module if 1) each Power Optimizer is connected to a single PV module or 2) it is the only Power Optimizer connected to a single PV module in the string.

(7) For SE16K and above, the minimum STC DC connected power should be 11KW.

(8) To connect more STC power per string, design your project using <u>SolarEdge Designer</u>.

SolarEdge is a global leader in smart energy technology. By leveraging world-class engineering capabilities and with a relentless focus on innovation, SolarEdge creates smart energy solutions that power our lives and drive future progress.

SolarEdge developed an intelligent inverter solution that changed the way power is harvested and managed in photovoltaic (PV) systems. The SolarEdge DC optimized inverter maximizes power generation while lowering the cost of energy produced by the PV system.

Continuing to advance smart energy, SolarEdge addresses a broad range of energy market segments through its PV, storage, EV charging, UPS, and grid services solutions.

at in ed he es V,

- f SolarEdge
- ♥ @SolarEdgePV
- @SolarEdgePV
- SolarEdgePV
- in SolarEdge
- 🔀 www.solaredge.com/corporate/contact

# solaredge.com

© SolarEdge Technologies, Ltd. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: December 29, 2022 DS-000012-ENG Subject to change without notice.

Cautionary Note Regarding Market Data and Industry Forecasts: This brochure may contain market data and industry forecasts from certain third-party sources. This information is based on industry surveys and the preparer's expertise in the industry and there can be no assurance that any such market data is accurate or that any such industry forecasts will be achieved. Although we have not independently verified the accuracy of such market data and industry forecasts, we believe that the market data is reliable and that the industry forecasts are reasonable.

# solar<mark>edge</mark>



# **Accelerate Solar with Domestic Content**

IronRidge offers racking systems that use 100% domesticallyproduced components. Our products made in the United States include: XR10 Rails, XR100 Rails, HUG Roof Attachment, Comp Shingle Flashing, and the BX Ballasted System.

To meet the qualifying criteria for tax credit incentives, solar projects must use a combination of modules, MLPE and racking with a minimum aggregate threshold of 40% Domestic Content.

# Pathway to 40+



### **NO NEED TO SETTLE**

Pick reputable products that your crews like installing. Our offerings are listed to UL 2703 and UL 3741, tested rigorously, and manufactured to the highest quality standards.



### **DO YOUR HOMEWORK**

Are you a financier or work with one? Understand terms and definitions. Obtain letters from the manufacturer documenting their position to share with your tax and legal counsel.



#### **STACK MANUFACTURERS**

Our partnerships with the leading inverter manufacturers allow multiple avenues for you to reach 40% in 2024 and 45% in 2025. See next page for the current list of domestic content.

# **Avoid the Pitfalls**



#### **READ THE FINE PRINT**

Ensure you qualify. Only finance companies offering third-party-owned systems are eligible, not installation companies or homeowners. Consult a legal professional for guidance.

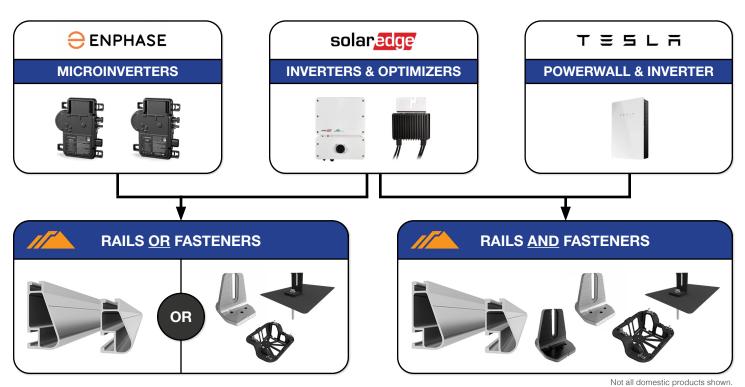


### **BE FULLY PREPARED**

Audits by Financiers, Commercial Project Owners, and the IRS are serious business. Ensure that your manufacturing partners can help you navigate any potential oversight.



### **STAY IN THE KNOW**


New information is coming out regularly. We promise to keep our customers posted. Scan the QR code below to visit our page dedicated to Domestic Content details.



Scan the QR code to visit our page dedicated to Domestic Content: IronRidge.com/DC

IronRidge does not provides tax, legal or accounting advice. This material has been prepared for informational purposes only and is not intended to be relied upon in place of professional advice. You should consult your own advisors before engaging in any transaction.

### Pathways to 40-45% Domestic Content



### **Residential Products**

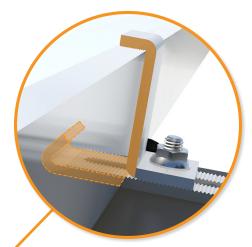
Maker	Туре	Part Number
Enphase	Inverters	IQ8HC-72-M-DOM-US IQ8X-80-M-DOM-US IQ8HC-72-M-US
SolarEdge	Inverters	SE3800H-USMNUBL75 SE5700H-USMNUBL75 SE7600H-USMNUBL75 SE10000H-USMNUBL75 SE11400H-USMNUBL75 USE3800H-USMNUBL75 USE5700H-USMNUBL75 USE7600H-USMNUBL75 USE10000H-USMNUBL75
	Optimizers	U650-1GM4MRMU
Tesla	Inverters	1538000-45-X
IronPidge	Rails	XR-10-168M-US XR-10-168B-US XR-100-168M-US XR-100-168B-US
IronRidge	Fasteners	LFT-FLSH03-B1-US FLSH-01-B1-US QM-HUG-01-M1-US QM-HUG-01-B1-US

### **Commercial Products**

Maker	Туре	Part Number				
Enphase	Inverters	IQ8P-3P-72-DOM-US				
	3-Phase Inverters	USE-SIN-USR0IBNx6				
ColorEdge	Synergy Managers	SE-DBL-US00IBNx6 SE-TRI-US00IBNx6				
SolarEdge	Synergy Units	USESUK-USROINNN6				
	Optimizer	C651U-1GMVMRRU C652U-1GMVMRRU				
	Rails & Fasteners	Same As Residential				
IronRidge	BX Ballasted System	BX-5D-P1 BX-10D-P1 BX-TCL-30MM-M1 BX-TCL-32MM-M1 BX-TCL-35MM-M1 BX-TCL-38MM-M1 BX-TCL-40MM-M1 BX-TCL-40MM-M1 BX-TCL-46MM-M1				

233




# **BX** Chassis

# Strong, Light, and Ready for Anything

The IronRidge BX System is designed to meet the needs of commercial solar—navigating complex roof layouts, while also handling the most extreme environmental conditions.

At the core of BX is the Chassis, a ballasted mount made of BASF Ultramid polyamides. They are exceptional for their high mechanical strength, rigidity and thermal stability (also being 100% recyclable).

Moreover, Ultramid polyamides afford good impact resistance even at low temperatures as well as UV protections for long life. Chassis come in 5° and 10° options and are backed by IronRidge's 25-year warranty.

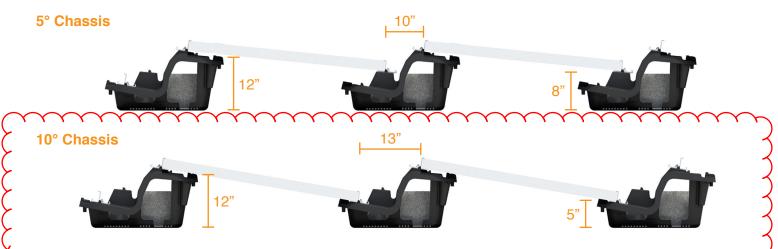


#### **Top & Bottom Clamp**

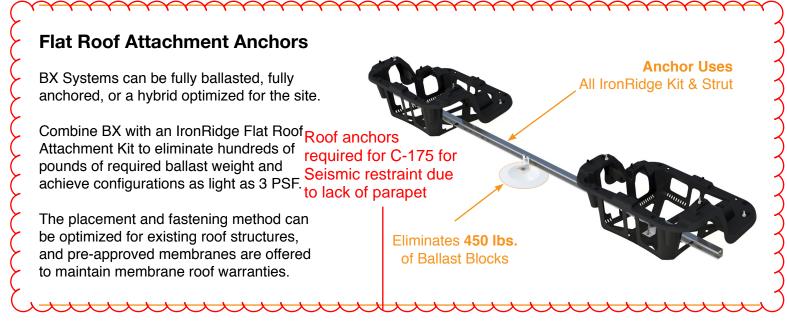
The multi-directional grip on the module from above and below ensures a strong connection regardless of force direction.

#### 360° Reinforcement

A flange around the entire perimeter helps to reinforce and stiffen the Chassis in all directions—alongside wide bends to reduce point loading and braced corners to increase rigidity.


#### **Roof-Friendly Design**

Wide base spreads weight and reduces point pressure, while openings along the bottom and corners prevent pooling and reduce ballast weathering.






### **Inter-Row Spacing & Edge Clearances**



With 10-13" inter-row spacing, BX provides an 8-10% increase in power density compared with other ballasted systems—that's a capacity increase of 20% in a typical 50kW system. The BX Chassis geometry also offers more than 5" of clearance in the 10-degree configuration and 8" in the 5-degree configuration, enabling the system to avoid drain domes, roof saddles, and conduit supports.



### **Testing & Certification**

#### **Design Assistant**

Automated design software provides an accurate bill of materials, using a simple drag-and-draw interface to generate a complete system plan—also generate a ballast map showing the required ballast for each Chassis.

#### **Permit Documentation**

Design Assistant project reports are backed with a ASCE/PE stamp and Commercial Services are also available to assist with more complex projects. Visit our website or contact an IronRidge sales representative.

#### UL 2703 & 3741 Listed

BX conforms to the latest UL safety standards for PV systems, including mechanical, bonding, hazard control, and Class A Fire Ratings (without wind deflectors). Ninety percent of solar modules are fully supported.









### Uniquely shaped for flat roofs.

IronRidge BX delivers superior power density and design flexibility to flat roof solar arrays. Made of a glassreinforced composite, the BX Chassis is engineered for extreme structural loading, yet is also shaped to be roof-friendly and easy to install.

Certified BX plan sets can be obtained instantly through an online Design Assistant or by contacting IronRidge Commercial Services.



#### **Glass-Reinforced Composite**

Corrosion-free and engineered for longterm structural performance.



**Class A Fire Rating** Certified to maintain the fire resistance rating of the existing roof.



UL 2703 & 3741 Listed

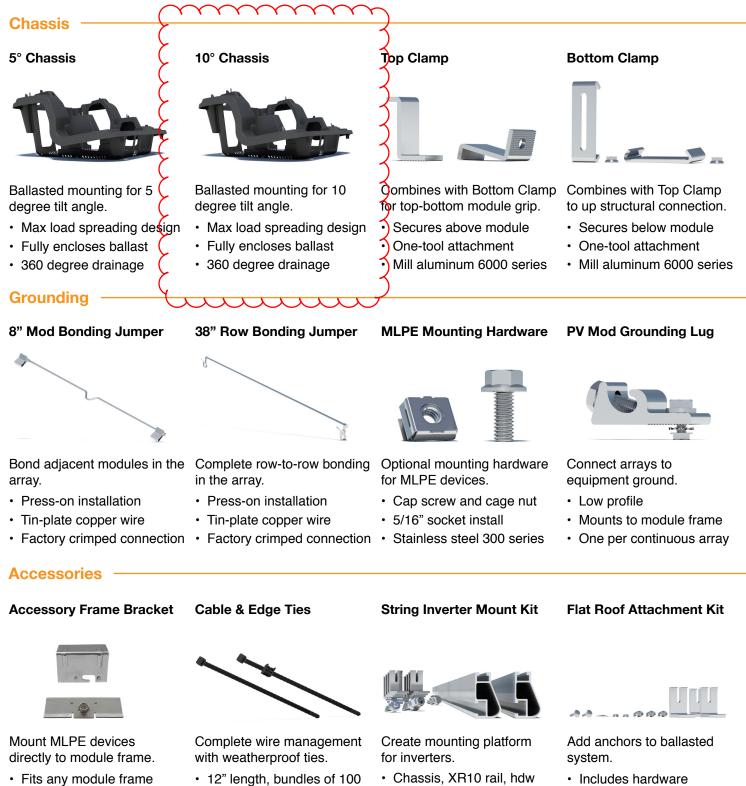
Entire system and components meet the latest UL safety standards.



#### **Commercial Services**

Engineering support to optimize system design.




#### **Design Assistant**

Online software makes it simple to create, share, and price projects.



#### 25-Year Warranty

Products guaranteed to be free of impairing defects.



- Mill aluminum finish
- UL 2703 listed

#### Resources



- · Up to 4' inverter base
- · Raises inverter off deck
- · For ballast-attached hybrid
- · Uses locally-sourced strut



Chassis Display #7 Recycle Label Like most glass-filled nylons, it is 100% recyclable-usually living on in furniture. Find more info at epa.gov/recycle

237

UV stabilized polvamide

Black finish

# Cost Estimate - T91 - C-175 (255.3 kW-DC)

Item	U	nit Cost	Qty	Cos	t with Markup	\$/Watt		Source
PV Modules (Sil-490 HN)	\$	404	521	\$	242,057	\$	0.95	Online price with 15% shipping and contractor markup
PV Racking (IronRidge 10degree BX Racking)	\$	73,540	1	\$	84,571	\$	0.33	MSRP with 15% shipping and contractor markup
SolarEdge P1100 Optimizers	\$	121	266	\$	37,014	\$	0.14	Online price with 15% shipping and contractor markup
SolarEdge SE100KUS Inverter (3x secondary units, 1x primary unit)	\$	6,785	2	\$	15,605	\$	0.06	Online price with 15% shipping and contractor markup
Sub-Total Material Cost	s			\$	379,246	\$	1.49	
Item	U	nit Cost	Qty		Cost	\$/Watt		
BOS (Conduit, cable, plumbing, etc.)		15%	-	\$	56,887			Percentage of material costs based on project scope and complexity
Site Work (Trenching, pads, fence, sidewalk restoration, etc.)	\$	15,000	1	\$	15,000			Allowance based on project scope
Total Direct Cost	s			\$	451,133	\$	1.77	
Contractor Design, Engineering, Permitting		8%	-	\$	30,340			Typical as percentage of material costs
Contractor PM		10%	-	\$	37,925	\$	0.15	Typical as percentage of material costs
Contractor Labor		20%	-	\$	75,849	\$	0.30	Typical as percentage of material costs, prevailing wage for ITC credits
Sales Tax (Battery Equipment Only)		10.35%	-	\$	-	\$	-	City of Seattle Sales Tax Inclusive of state rate
Sub-Tota	l I			\$	595,247	\$	2.33	
Contingency		10%	-	\$	59,525			Typical as percentage of subtotal construction costs
Sub-Tota	d i				654,772	\$	2.56	
Escalation to midpoint of 2025		4.5%	-		29,465			-
Total Construction Costs	5				684,236	\$	2.68	
Port of Seattle - Maritime Overhead Premium		25.1%	-	\$	171,743			Overhead rate provided by Port Staff
Total Project Costs	5			\$	855,980	\$	3.35	
								-
System Size (W-DC	)				255,300	Watts		
								-

Appendix F Port of Seattle Maritime Solar Feasibility Study Formulas

### **Maritime Solar Photovoltaic Feasibility Study Formulas**

The following formulas were used to perform financial analysis for the project. The calculations are performed for each year of the model period. 25-years was selected for this period based on typical solar module performance warranty period. Formulas start at the base-level inputs and roll up into the final calculations. Throughout the calculations, construction is assumed to occur within a single year (Year₀), and *n* is used as the time variable for number of years since construction (e.g. n=0 in the construction year)

#### Annual Inflation Adjustment (\$USD)

This is a generic formula for all inflation adjusted values.

 $(Year_0 Value) * (1 + (Inflation Rate))^{Year after Construction} = Year_n Value$ 

O&M costs and Inverter Replacement costs are both inflation adjusted. Electricity rates are separately regulated through the utility commission and are escalated at a different rate.

#### Annual O&M Expenses (\$USD)

O&M expense estimates start in year 1 at \$10 per kW-DC of system size and are inflation adjusted annually.

Inflation Adjusted  $0\&M Expenses = Year_n 0\&M Expenses$ 

#### Annual Module Production (kWh)

Module performance starts at 100% in year 1 and is degraded at a constant 0.5% annually. This adjusted percent is then applied to the year 1 production estimate from Helioscope Modeling.

 $(Year \ 1 \ modeled \ production \ in \ kWh) * (100\% - (0.5\%) * (Year \ after \ Construction)) = Year_n \ Production \ in \ kWh$ 

#### Annual Electricity Cost (\$/kWh)

The electricity rates provided for each site by the Port were escalated at a fixed utility escalation rate of 4% which is the historical average for our area.

 $(Year \ 1 \ Electricity \ Cost \ in \ kWh) * (1 + (Utility \ Escalation \ Rate))^{Year \ after \ Construction} = Year_n \ Electricity \ Cost$ 

#### Annual Electricity Value (\$USD)

Annual module production estimate in kWh is multiplied by that year's estimated electricity value \$/kWh

 $Year_n$  Electricity Cost in  $/kWh * Year_n$  Production in  $kWh = Year_n$  Production Value

#### Equipment Replacement Costs (\$USD)

This value encompasses periodic replacement costs expected. For the 25-year period modeled, this is limited to inverter replacement at year 15. Module replacement at year 25 is evaluated as occurring just after the model period is completed so it is not included in this analysis.

Inverter replacement costs are inflation adjusted after a year 1 value of \$70/kW-AC

 $Year_n$  Inverter Replacement =  $Year_n$  Equipment Replacement = \$0 for all years but year 15

#### **Decommissioning Costs**

System decommissioning is evaluated as occurring 25 years after construction. Costs are taken as 3% of initial installation costs and inflation adjusted. These costs are included in NPV calculation.

System Installation Cost * (3%) = Year₀ Decommissioning Costs

#### Investment Tax Credit (ITC) (\$USD)

This tax credit is taken as 30% of the system installation costs including any soft costs associated with construction. The Port may receive this credit under the Direct Pay Provision of the Inflation Reduction Act 2021. Financial performance with and without the ITC are provided in the report, and eligibility requirements are discussed in detail there.

System Installation Cost * (30%) = ITC Value in \$USD

#### System Installation Cost and Cost per Watt (\$USD/Watt)

Cost per Watt is a convenient unit cost for solar PV systems used widely by the industry for easy comparison between systems of varying size.

 $Cost Per Watt \$/Watt = \frac{System Installation Cost}{System Size in Watts - DC}$ 

In the report body we provide two Cost Per Watt values, with and without the 25.1% Port overhead applied.

#### Annual Cash Flow (\$USD)

Cash flow each year is the sum of costs and benefits of the system.

$$Year_n Production Value - Year_n Equipment Replacement - Year_n 0 \& M Expenses = Year_n Cash Flow$$

The *ITC Value in \$USD* is applied as a positive value to the cash flow in year 1. Payback graphs also show cash flow without the ITC.

Inflation adjusted decommissioning costs are included in cash flow at year 25.

#### Net Cash Flow (\$USD)

Net cash flow is the sum of each year's cash flow added to the initial investment during construction (Year 0).

Year_n Net Cash Flow = System Installation Cost - 
$$\sum_{n=1}^{n}$$
 Year_n Cash Flow

# Payback Year

The payback year is the year where Net Cashflow crosses the zero threshold.

*Payback Year* = n where *Year*_n *Net Cash Flow*  $\geq$  \$0

#### Net Present Value

Net Present Value (NPV) is calculated with the inflation adjusted cash flow and discount rate. A more detailed discussion of NPV is provided in the report body.

$$NPV = \sum_{n=1}^{n} \frac{Year_n \, Cash \, Flow}{(1+r)^n}$$

- *r* is the discount rate
- *n* is the time period (year)

Appendix G Port Provided Documents List

### **Maritime Solar Feasibility Study -Port Provided Documentation**

- Port of Seattle Campus Map
- Seattle Waterfront Clean Energy Strategy (SWCES) Load Forecasting Analysis Site Level Results
- Campus Level Electricity Data Table for 2023 only
- Building Level Electricity Data Table
  - Shilshole Bay Marina A-1 Admin Building
  - Terminal 91 C-175
  - Terminal 91 A-1 Warehouse
  - o Terminal 91 C-173
  - o Terminal 91 Smith Cove Cruise Terminal
  - Pier 66 Bell Harbor Conference Center/Bell Street Cruise Terminal
  - Pier 66 Bell Harbor Marina Office
- Facility Roof Information Table
- Screening Tool Inputs:
  - Site Owner
  - o Site Operator
  - o Meter type
  - o Building Type
  - o \$/kWh (October 2024)
  - o SCL Rate Code
  - o SCL Rate Code Definition
- As-built drawings for in-person site assessments
  - Shilshole Bay Marina A-1 Admin Building
  - Terminal 91 C-175
  - Terminal 91 A-1 Warehouse
  - Terminal 91 C-173
  - Terminal 91 Smith Cove Cruise Terminal
  - o Pier 66 Bell Harbor Conference Center/Bell Street Cruise Terminal
  - Pier 66 Bell Harbor Marina Office
  - Terminal 91 C-155
  - Fishermen's Terminal N-9 Netshed
  - Fishermen's Terminal C-3 West Wall Office
- Pier 66 Annual Energy Use by meter and month.
- Site Electrical Distribution Diagrams:
  - Fishermen's Terminal N-9 Netshed
  - Fishermen's Terminal C-3 West Wall Office
  - o Pier 66 Bell Harbor Conference Center/Bell Street Cruise Terminal
  - Shilshole Bay Marina A-1 Admin Building
  - Terminal 91 C-175
  - Terminal 91 C-173

- Roof Warranty Letters
  - Terminal 91 C-175
  - Terminal 91 Smith Cove Cruise Terminal
  - Shilshole Bay Marina A-1 Admin Building

Appendix H Project Team and Key Resumes

#### **Project Team and Roles**

Säzän Group was able to complete this project successfully due to our stellar team of engineers and renewable energy specialists. Resumes are provided for the primary contributors to the project.

#### Säzän Group Inc.

#### Tom Marseille, PE, Hon AIA, LEED Fellow, Managing Principal

Principal in Charge of the project providing oversight and management of the On-Call Contract.

#### Jack Newman, REP, VMA, Director Clean Energy Solutions

Project Manager and primary point of contact for the project. Lead facilitator of the study responsible for collaboratively developing evaluation and screening criteria, QC of technical work, and report development.

#### Tom Bowen, EIT, REP, Technical Lead

Solar and Battery storage specialist leading the project technical analysis. Performing remote and inperson site assessments, solar modeling, battery analysis, equipment selection, and racking design.

#### Tyler Beam, PE, Associate Principal, Electrical

Professional Engineering support for QC of the prioritized site electrical pre-designs and regular consultation during concept development.

#### Thomas Childs, Associate Principal, Electrical

Electrical Engineer leading the pre-design team and providing interconnections strategy considerations.

#### Grant Williams, Project Coordinator

Provided meeting and project coordination support. Research, narrative, and workbook development for financial analysis on project.

#### Saez Consulting Engineers (A TKDA Company)

#### Dan Munn, PE, SE, Regional Vice President

Project manager providing engineering QC and final review of structural memos.

#### Craig Collin, PE

Lead structural engineering support for the project providing field inspections, site evaluations, structural analysis, and constructability considerations.





#### Licensure

Certified Renewable Energy Professional, Association of Energy Engineers

Value Methodology Associate, SAVE International

#### Education

BS, Construction Management, University of Washington

NABCEP Solar PV Mastery Training Completion

Kaplan Clean Technology Academy

Association of Energy Service Practitioners Leadership Program

# Jack Newman, REP, VMA

#### Clean Energy Funding Specialist/Director of Clean Energy Solutions

Jack is the Director of Clean Energy Solutions at Säzän Group. He is a Certified Renewable Energy Professional with more than 10 years in the clean energy industry. Six of those years has been spent working with renewable energy feasibility studies, microgrid project development, solar modeling and analysis, and grant funding assistance. His experience includes energy benchmarking, feasibility studies, utility program management, construction cost estimating, and project management.

#### RELEVANT PROJECTS

#### Washington State Department of Commerce, Solar Plus Storage for Resilient Communities, Technical Assistance, Statewide, WA

Technical assistance for municipal, tribal, and remote communities on solar + storage feasibility study development, modeling, cost estimates, report development, and grant application assistance. Our role as statewide technical assistant to Commerce offered feasibility study support in compliance with Track 1 grant requirements at no cost to the communities we serve. Projects included microgrid feasibility studies for Whatcom County, Quileute Tribe, and Port Gamble S'Klallam Tribe.

# Kitsap County, Department of Emergency Management, Microgrid Study, Bremerton, WA

Project Manager for providing a microgrid feasibility study for their renovated facility, including solar PV and battery energy storage integration for the Emergency Operations Center, and grant application assistance for project development.

#### Port of Seattle, Solar Feasibility Study, Seattle, WA

Project Manager in assessing the viability of installing solar energy systems on 50 locations for the Port of Seattle. This involves site visits for storage facilities, warehouses, terminal buildings, an administration building, and conference centers for a total of 1,221,552 SF of roofs. Project final deliverable is a solar feasibility study to determine three locations for solar PV and battery storage development.

# City of Issaquah, Solar Plus Storage Resiliency & Grant Overlay Consulting, Issaquah, WA

Project Manager in support of solar plus storage feasibility assessments on potential sites in Issaquah. These studies include full analysis and pre-design for solar and battery storage integration on six sites in the City. Säzän Group worked with project partners and stakeholders to gather information; facilitate a stakeholder engagement process; and provide energy analyses, cost estimates, microgrid modeling, constructability review, payback analyses, equipment specifications, and an overview of funding resources.

#### Port of Bellingham, Indefinite Duration Indefinite Quantity Solar Feasibility Studies, and Owner's Representation, Bellingham, WA

Project Manager supporting the Port's IDIQ contract. Under the IDIQ Säzän Group performed solar PV feasibility studies for 12 buildings. Säzän Group worked with project partners and stakeholders to gather information, identify legal, structural, electrical, and regulatory hurdles for development, and develop budget planning estimates for the Port's board. Of the 12 sites, the BLI Airport was selected for prioritization and construction. Säzän Group supported the Port with Owner's Representation services, RFP development, and construction management for the array and ribbon cutting is expected early December 2024.





Licensure

Certified Renewable Energy Professional, Association of Energy Engineers

Engineer in Training

**Education** BS, Mechanical Engineering, Washington State University

# Tom Bowen, EIT, REP

#### Project Manager/Technical Lead

Tom has been serving Säzän Group for the past four years and has become indispensable for his ability and skill in conducting technical analysis and feasibility studies. Before coming to Säzän Group, Tom spent nearly 20 years with the Department of Defense where he operated and maintained naval submarine nuclear power plant systems. He has 10 years of experience in quality assurance certification and program administration. Tom's ability to understand critical electrical and mechanical systems and his keen eye for detail makes him ideal at leading studies and writing successful grants for the solar and clean energy field.

#### RELEVANT PROJECTS

#### Washington State Department of Commerce, Solar Plus Storage for Resilient Communities, Technical Assistance, Statewide, WA

Technical assistance for municipal, tribal, and remote communities on solar + storage feasibility study development, modeling, cost estimates, report development, and grant application assistance. Our role as statewide technical assistant to Commerce offered feasibility study support at no cost to the selected communities. We then used those studies to complete Commerce Track 2 grant applications for those communities. Projects included community engagement and microgrid feasibility studies for Whatcom County, Quileute Tribe, and Port Gamble S'Klallam Tribe.

# Kitsap County, Department of Emergency Management, Microgrid Study, Bremerton, WA

Technical Lead for providing a microgrid feasibility study for their renovated facility, including solar PV and battery energy storage integration for the Emergency Operations Center, and grant application assistance to support project development.

#### Port of Seattle, Solar Feasibility Study, Seattle, WA

Technical lead in assessing the viability of installing solar energy systems on 50 locations for the Port of Seattle. This involves site visits for storage facilities, warehouses, terminal buildings, an administration building, and conference centers for a total of 1,221,552 SF of roofs. Project final deliverable is a solar feasibility study to determine three locations for solar PV and battery storage development.

# City of Issaquah, Solar Plus Storage Resiliency & Grant Overlay Consulting, Issaquah, WA

Technical lead in support of solar plus storage feasibility assessments on potential sites in Issaquah. These studies include full analysis and pre-design for solar and battery storage integration on six sites in the City. Säzän Group worked with project partners and stakeholders to gather information; facilitate a stakeholder engagement process; and provide energy analyses, cost estimates, microgrid modeling, constructability review, payback analyses, equipment specifications, and an overview of funding resources.

#### Confederated Tribes of the Coos, Lower Umpqua, and Siuslaw Indians, Solar Plus Battery Storage feasibility Study, Coos Bay, OR

Project Manager and technical lead for two solar and battery storage feasibility studies for the Tribe's Administration building and Emergency Services Building. This included solar PV modeling, site assessment, battery modeling, community engagement surveys, single line diagrams, and site plans. We assisted in applying for and obtaining a \$1M construction grant from the Oregon Department of Energy.



# J. Tyler Beam, PE

Electrical Engineer

With more than 20 years of experience providing electrical design, consulting, and engineering services, Tyler Beam's experience includes project management and design for a variety of projects ranging from healthcare, multifamily, municipal, industrial, hospitality, commercial facilities. He has a wide variety of experience in both new and renovation projects for power, lighting, fire alarm, communications, security, and access control systems. Tyler's approach allows him to plan and organize the coordination and design process to successfully deliver projects.

Relevant Project Experience

**City of Seattle, City Hall Water Heaters,** *Seattle, WA* Electrical Engineer

Professional Engineer, Electrical: WA #52711 OR #078010PE CA #E-21545 UT #11571699-2202 NV #31795 CO #PE.0056793

**City of Renton, City Hall Elevators,** *Renton, WA* Electrical Engineer

**City of Renton, City Hall Emergency Generators,** *Renton, WA* Electrical Engineer

**City of Seattle, Municipal Tower Floors 28/30/34/35/36 TI,** *Seattle, WA* Electrical Engineer

#### Education

NC #057187

Licensure

BS, Electrical Engineering, Henry Cogswell College, Everett, WA

#### **City of Seattle, South Precinct HVAC Replacement,** *Seattle, WA* Electrical Engineer

**Pierce County, Medical Examiner Building Upgrades,** *Tacoma, WA* Electrical Engineer

**US Department of Veterans Affairs, 2nd Floor Renovation,** *Spokane, WA* Electrical Engineer

**Evergreen Health, Coral Tower Telecomm Rooms Upgrade,** *Kirkland, WA* Electrical Engineer

Mason Health, Mason General Hospital Upgrades, Shelton, WA Electrical Engineer

Mason Health, Mason General Hospital Campus Master Plan Phase I, Shelton, WA Electrical Engineer

MultiCare Health Systems, Tacoma General Hospital TI, Tacoma, WA Electrical Engineer

Viriginia Mason Franciscan Health, West Seattle Clinic 2nd Floor, Seattle, WA Electrical Engineer



# SÄZÄN GROUP THOMAS CHILDS

#### Lead Electrical Designer

#### PROPORTION OF WORK HOURS

Design: 25% Construction: 10%

#### **WORK HISTORY**

20+ years in in MEP engineering 10 years with Säzän Group

#### **EDUCATION**

BA Psychology, Cal State Northridge

#### REFERENCES

Marc Everson, ABBOTT Construction, Project Executive (206) 467-8500 x 110, meverson@ abbottconstruction.com

Brad Velasco, VECA Electric, Director of Preconstruction (206) 436-5271, brad.velasco@veca.com



Thomas has more than 20 years of electrical engineering design, lighting and lighting controls design, and project management experience over a wide variety projects. His expertise includes power distribution, fire alarm systems, nurse call systems, lighting controls for commercial and theatrical applications, lighting design for interior, exterior, and sports arenas, construction coordination, and feasibility studies.

#### **SELECTED PROJECT EXPERIENCE**

- University Village Retail Center, Seattle, WA Thomas's role as Electrical Project Manager served the project in consulting services for facility master plan electrical design, engineering services, Seattle City Light coordination, new construction projects, and Owner's representation for engineering oversight for consistency with University Village standards, tenant coordination, and service design and load calculations.
- University Village Shopping Center South Building and West Garage, Seattle, WA - Thomas's role as Electrical Designer included the design for 314,000 SF new construction with five levels of parking (700+ stalls) above two levels of shell retail space. Design services included extensive utility coordination and site utility relocations to accommodate the new building and complete electrical design.
- University of Washington, Interdisciplinary Engineering Building, Seattle, WA - Thomas's role as Electrical Designer included design for the new construction of a 63,000 SF undergraduate engineering building. The design includes relocating the UW medium voltage distribution system that was running through the project site and modifications to tunnel node NE2, complete building electrical design, lighting, lighting controls systems, telecommunications infrastructure, classroom services equipment integration, and fire alarm.
- The Boeing Company Renton Plant Building 10-109, Building O4-074, and IMPACC/MMCO Breaker Rebuild and Controls Replacement Upgrade, Renton, WA - Thomas was the Electrical Designer for this electrical infrastructure improvement. Project included upgrades and replacing the main plant's Substations #1 and #2 Medium Voltage Switchgear MMCO relay controls and infrastructure wiring.



**Certifications** Professional Engineer, Structural, WA #38727

LEED AP

#### Education

BS, Civil Engineering, Arizona State University

# Dann Munn, PE, SE



TKDA | Structural Engineering Support

Dan engages professional partners regionally in the planning and implementation of engineering design projects and renewable energy installations. He works directly with Design-Build contractors as a design expert for solar + BESS installations and works directly with owners and Construction Managers as a structural and Civil expert in renewable energy installations. Dan is experienced in assisting solar RFPs for design-build solicitation, performing design peer reviews, and for manufacturer and installer engagement. He has led the design of over 100 solar plants from traditional rooftops to some of the most unique facade applications for iconic structures. Recent designs include multi-site solar and renewable energy systems throughout seven rooftops for Seattle Public Schools, a custom 6-MW tiled roof and facade system at a confidential corporate client's headquarters, and a 6.4-MW rooftop solar system for the Mandalay Bay Resort and Conference Center in Las Vegas, which was the largest rooftop solar plant in the US at the time.

#### RELEVANT PROJECTS

**Hunt Energy Network, Battery Energy Storage Facilities, Various Locations, TX** Dan conducted the civil design layout, site planning, grading plans, road layouts, section views, SWPPP, erosion control plans, culverts, and drainage/retention requirements for over 25 and counting 10 MWh BESS Peaker plants as a part of the ERCOT program for energy resiliency and carbon reduction program.

Confidential Client, Solar Campus-wide PV + BESS Roll-out, Mountainview, CA

Dan was selected to work as the Owner's Engineer for the client's district energy team responsible for PV and BESS roll-out over seven campuses and 30 buildings as a part of the Solar Fund projects. Dan's role was to team with their performance modeling experts and electrical engineering firm peers to help master plan PV and battery installations that maximize carbon and financial paybacks for the clean energy investment dollars. Dan's role on the team was to review existing building structures, peer review roof systems' age and condition, and existing site utility infrastructure.

#### CSU Dominguez Hills, Solar Project, Dominguez Hills, CA

The project involved the completion of building surveys and rooftop evaluations including 3D laser roof scans for solar array installations at two California locations. Using a combination of a Faro Scene and Leica BLK360, we produced 3D models of the rooftops to be used in solar array layouts to ensure minimal conflict between existing roof features and solar installation. Seven large rooftops have been completed to date including the 300,000 SF Kroger Bakery in La Habra and multiple buildings at California State University Dominguez Hill.

#### Port of Bellingham, Solar Assessments, Bellingham, WA

Owner's engineer services for multi-site as a sub to Säzän Group. Dan performed full structural engineering calculations for 12 existing buildings which informed the Port's selection of BLI Airport for prioritization and construction of a 100kW-AC rooftop array. Ribbon cutting on this project is expected early December 2024.

#### Seattle Public Schools, Solar Addition, Seattle, WA*

Dan led the engineering team for the design and installation of solar rooftop PV on six school sites for the Seattle Public School District. The projects were awarded over \$750,000 in grant awards from Seattle City Light and the Washington Department of Commerce.

# **CRAIG COLLINS, PE**

#### STRUCTURAL ENGINEER

Licensed professional engineer with a primary focus in steel design. Experienced in the design of buildings and other miscellaneous structures. With a construction and detailing background, he provides well thought-out solutions that can enhance a project at all stages.

#### Previous Experience

*Project Engineer, General Motors Plant Modernization* | *Various Locations.* Project engineer for massive overhaul of facilities in Ft Wayne, IN, Arlington, TX, and Flint, MI. Responsibilities included the design of a building link between stamping plant and assembly plant, modification of existing buildings, trestles, conveyor lines, and truss analysis/reinforcing. Frequent site visits were performed at all locations to verify existing conditions or modify construction conflicts.

Lead Structural Engineer, **Computer Design Research and Learning Center**, University of *Illinois, Chicago, IL.* Lead structural engineer for new 168,000 sq. ft, 6-story \$85MM educational building. Engineering responsibilities included basement design, Design o three new laboratory spaces. Responsibilities included analysis of existing conditions, design of select steel framing, façade support, coordination with architect, overseeing drawing production, and shop drawing review during CA.

*Project Lead, Damen Green Line Station, Chicago, IL.* Project lead for a new \$60 million new CTA station. DZSE's scope included connection design for HSS framed pedestrian bridge, HSS framed stair tower, station house, and modifications to existing elevated track support framing.

Project Lead, **Kennedy Space Center Launch Complex**, *Titusville*, *IL*. Project lead to modify an existing Launch Tower (LC39A). Scope included replacement or reinforcement of existing tower members, erection sequencing, & connection design.

*Project Lead, William Eckhardt Research Center Laboratory, Chicago, IL.* Project Lead to design three new laboratory spaces. Responsibilities included analysis of existing conditions, design of mezzanine, stair, and various support structures for sensitive equipment.

*Project Lead,* **Sauganash Elementary Annex II,** *Chicago, IL.* Project lead for new 37,000 sq. ft., 3-story \$26MM addition to an existing Chicago Public School, including a partial basement. Engineering responsibilities included basement design, steel framing design of gravity and lateral systems, façade support, overseeing drawing production, coordination with architect and owner (CPS), and shop drawing review during CA.

#### **PREVIOUS EMPLOYERS**

Senior Project Engineer, **DWA (Formerly DZSE),** Aug 2016 – May 2024 Staff Engineer II, **Ruby + Associates**, May 2012 – Aug 2016



Date of Hire June/2024

Years With Previous Firms 12

Education

M.Eng. – Structural Engineering, University of Michigan, Ann Arbor, 2015

B.S. - Civil Engineering, Purdue University, West Lafayette, 2012

Registrations

Professional Engineer - MI #6201063798





www.sazan.com